Heleen A. de Wit, François Clayer, Øyvind Kaste, Magnus Norling
{"title":"从人为酸化到自然酸化:未来沉积和气候对挪威腐殖质集水区恢复的影响","authors":"Heleen A. de Wit, François Clayer, Øyvind Kaste, Magnus Norling","doi":"10.1111/1440-1703.12524","DOIUrl":null,"url":null,"abstract":"Five decades of monitoring data (1974–2022) at the acidified forested catchment of Langtjern in southern Norway document strong chemical recovery and browning of surface water, related to changes in sulfur (S) deposition. Further recovery is likely to be impacted by future air quality and climate, through catchment processes sensitive to climate change, where the relative importance of these drivers of recovery is poorly known. Here, we explore the importance of the aforementioned drivers for recovery using the well‐established process‐oriented Model of Acidification of Groundwater In Catchments (MAGIC) with historical and projected deposition and climate from 1860 to 2100. New in MAGIC are (i) a solubility control of dissolved organic carbon (DOC) from S deposition, which allows inclusion of the role of organic acids in chemical recovery and (ii) climate‐dependency of weathering rates. MAGIC successfully described observed chemical recovery and browning, and the change toward organic acid dominated acidification status. Hindcasts of pH predicted lower preindustrial pH than previously modeled with MAGIC (simulated without S‐dependency of DOC solubility). Future deposition resulted in limited further recovery. Climate scenarios indicated a substantially wetter future, leading to increased base cation losses and slight surface water reacidification. A sensitivity analysis revealed that a 25%–50% increase of weathering rates was needed to reach preindustrial acid‐neutralizing capacity in 2100, provided S deposition is reduced to a minimum. We predict that the limited chemical recovery from reduced S deposition will be counteracted by climate‐driven reacidification from base cation losses, but that enhanced weathering rates could partly compensate these losses.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From anthropogenic toward natural acidification: Effects of future deposition and climate on recovery in a humic catchment in Norway\",\"authors\":\"Heleen A. de Wit, François Clayer, Øyvind Kaste, Magnus Norling\",\"doi\":\"10.1111/1440-1703.12524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Five decades of monitoring data (1974–2022) at the acidified forested catchment of Langtjern in southern Norway document strong chemical recovery and browning of surface water, related to changes in sulfur (S) deposition. Further recovery is likely to be impacted by future air quality and climate, through catchment processes sensitive to climate change, where the relative importance of these drivers of recovery is poorly known. Here, we explore the importance of the aforementioned drivers for recovery using the well‐established process‐oriented Model of Acidification of Groundwater In Catchments (MAGIC) with historical and projected deposition and climate from 1860 to 2100. New in MAGIC are (i) a solubility control of dissolved organic carbon (DOC) from S deposition, which allows inclusion of the role of organic acids in chemical recovery and (ii) climate‐dependency of weathering rates. MAGIC successfully described observed chemical recovery and browning, and the change toward organic acid dominated acidification status. Hindcasts of pH predicted lower preindustrial pH than previously modeled with MAGIC (simulated without S‐dependency of DOC solubility). Future deposition resulted in limited further recovery. Climate scenarios indicated a substantially wetter future, leading to increased base cation losses and slight surface water reacidification. A sensitivity analysis revealed that a 25%–50% increase of weathering rates was needed to reach preindustrial acid‐neutralizing capacity in 2100, provided S deposition is reduced to a minimum. We predict that the limited chemical recovery from reduced S deposition will be counteracted by climate‐driven reacidification from base cation losses, but that enhanced weathering rates could partly compensate these losses.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/1440-1703.12524\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1440-1703.12524","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
挪威南部兰特耶恩(Langtjern)酸化森林集水区五十年(1974-2022 年)的监测数据记录了与硫(S)沉积变化有关的强烈化学恢复和地表水褐化现象。通过对气候变化敏感的集水过程,进一步的恢复可能会受到未来空气质量和气候的影响。在此,我们利用成熟的以过程为导向的集水区地下水酸化模型(MAGIC),结合 1860 年至 2100 年的历史和预测沉积与气候,探讨了上述驱动因素对恢复的重要性。MAGIC 的新功能包括:(i) S 沉积物对溶解有机碳 (DOC) 的溶解度控制,从而将有机酸在化学恢复中的作用纳入其中;(ii) 风化速率与气候的关系。MAGIC 成功地描述了观测到的化学恢复和褐变,以及有机酸主导的酸化状态变化。对 pH 值的后向预测表明,工业化前的 pH 值低于 MAGIC 先前的模拟值(模拟值与 DOC 溶解度的 S 依赖性无关)。未来沉积导致的进一步恢复有限。气候情景表明,未来将更加潮湿,导致碱阳离子损失增加和地表水轻微再酸化。一项敏感性分析表明,如果要在 2100 年达到工业化前的酸中和能力,需要将风化率提高 25%-50%,前提是将 S 沉积降至最低。我们预测,减少 S 沉积带来的有限化学恢复将被气候驱动的基阳离子损失造成的再酸化所抵消,但风化率的提高可以部分弥补这些损失。
From anthropogenic toward natural acidification: Effects of future deposition and climate on recovery in a humic catchment in Norway
Five decades of monitoring data (1974–2022) at the acidified forested catchment of Langtjern in southern Norway document strong chemical recovery and browning of surface water, related to changes in sulfur (S) deposition. Further recovery is likely to be impacted by future air quality and climate, through catchment processes sensitive to climate change, where the relative importance of these drivers of recovery is poorly known. Here, we explore the importance of the aforementioned drivers for recovery using the well‐established process‐oriented Model of Acidification of Groundwater In Catchments (MAGIC) with historical and projected deposition and climate from 1860 to 2100. New in MAGIC are (i) a solubility control of dissolved organic carbon (DOC) from S deposition, which allows inclusion of the role of organic acids in chemical recovery and (ii) climate‐dependency of weathering rates. MAGIC successfully described observed chemical recovery and browning, and the change toward organic acid dominated acidification status. Hindcasts of pH predicted lower preindustrial pH than previously modeled with MAGIC (simulated without S‐dependency of DOC solubility). Future deposition resulted in limited further recovery. Climate scenarios indicated a substantially wetter future, leading to increased base cation losses and slight surface water reacidification. A sensitivity analysis revealed that a 25%–50% increase of weathering rates was needed to reach preindustrial acid‐neutralizing capacity in 2100, provided S deposition is reduced to a minimum. We predict that the limited chemical recovery from reduced S deposition will be counteracted by climate‐driven reacidification from base cation losses, but that enhanced weathering rates could partly compensate these losses.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.