用于安全 MIMO 通信的耦合相移 STAR-RIS:基于 DRL 的波束成形设计

IF 3.7 3区 计算机科学 Q2 TELECOMMUNICATIONS IEEE Communications Letters Pub Date : 2024-09-18 DOI:10.1109/LCOMM.2024.3462798
Zhengyu Zhu;Hongxu Wang;Gangcan Sun;Xingwang Li;Zhengyang Shen;Yuanwei Liu;Jianhua Zhang
{"title":"用于安全 MIMO 通信的耦合相移 STAR-RIS:基于 DRL 的波束成形设计","authors":"Zhengyu Zhu;Hongxu Wang;Gangcan Sun;Xingwang Li;Zhengyang Shen;Yuanwei Liu;Jianhua Zhang","doi":"10.1109/LCOMM.2024.3462798","DOIUrl":null,"url":null,"abstract":"A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided multiple-input multiple-output (MIMO) secure communication system is explored. A practical coupled phase-shift model of STAR-RIS is taken into account for beamforming design. Based on this model, a joint active and passive beamforming optimization problem is formulate to maximize the long-term sum secrecy rate of transmission and reflection users. An efficient deep reinforcement learning (DRL)-based algorithm is proposed to address the multivariate coupling issue in the joint beamforming design problem. Simulation results show that: 1) All STAR-RIS schemes can achieve better secrecy performance gain than the conventional RIS; 2) Compared to the optimal independent phase shifts, couple phase shifts of STAR-RIS only lead to a slight performance loss.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 11","pages":"2488-2492"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled Phase-Shift STAR-RIS for Secure MIMO Communication: A DRL-Based Beamforming Design\",\"authors\":\"Zhengyu Zhu;Hongxu Wang;Gangcan Sun;Xingwang Li;Zhengyang Shen;Yuanwei Liu;Jianhua Zhang\",\"doi\":\"10.1109/LCOMM.2024.3462798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided multiple-input multiple-output (MIMO) secure communication system is explored. A practical coupled phase-shift model of STAR-RIS is taken into account for beamforming design. Based on this model, a joint active and passive beamforming optimization problem is formulate to maximize the long-term sum secrecy rate of transmission and reflection users. An efficient deep reinforcement learning (DRL)-based algorithm is proposed to address the multivariate coupling issue in the joint beamforming design problem. Simulation results show that: 1) All STAR-RIS schemes can achieve better secrecy performance gain than the conventional RIS; 2) Compared to the optimal independent phase shifts, couple phase shifts of STAR-RIS only lead to a slight performance loss.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 11\",\"pages\":\"2488-2492\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684115/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684115/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了一种同时发射和反射的可重构智能表面(STAR-RIS)辅助多输入多输出(MIMO)安全通信系统。在波束成形设计中考虑了 STAR-RIS 的实用耦合相移模型。基于该模型,提出了一个主动和被动波束成形联合优化问题,以最大化传输和反射用户的长期总保密率。为解决联合波束成形设计问题中的多变量耦合问题,提出了一种基于深度强化学习(DRL)的高效算法。仿真结果表明1) 与传统 RIS 相比,所有 STAR-RIS 方案都能获得更好的保密性能增益;2) 与最优独立相移相比,STAR-RIS 的耦合相移只会导致轻微的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coupled Phase-Shift STAR-RIS for Secure MIMO Communication: A DRL-Based Beamforming Design
A simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) aided multiple-input multiple-output (MIMO) secure communication system is explored. A practical coupled phase-shift model of STAR-RIS is taken into account for beamforming design. Based on this model, a joint active and passive beamforming optimization problem is formulate to maximize the long-term sum secrecy rate of transmission and reflection users. An efficient deep reinforcement learning (DRL)-based algorithm is proposed to address the multivariate coupling issue in the joint beamforming design problem. Simulation results show that: 1) All STAR-RIS schemes can achieve better secrecy performance gain than the conventional RIS; 2) Compared to the optimal independent phase shifts, couple phase shifts of STAR-RIS only lead to a slight performance loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
期刊最新文献
Table of Contents IEEE Communications Letters Publication Information IEEE Communications Society Information Table of Contents IEEE Communications Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1