Xinran Sun;Zhengming Zhang;Chunguo Li;Yongming Huang;Luxi Yang
{"title":"为大规模多输入多输出 CSI 反馈设计的具有离散潜伏表示的有效网络","authors":"Xinran Sun;Zhengming Zhang;Chunguo Li;Yongming Huang;Luxi Yang","doi":"10.1109/LCOMM.2024.3462977","DOIUrl":null,"url":null,"abstract":"The efficacy of massive multiple-input multiple-output techniques heavily relies on the accuracy of the downlink channel state information (CSI) in frequency division duplexing systems. Many works focus on CSI compression and quantization to enhance the CSI reconstruction accuracy with lower overhead of downlink pilots and uplink feedback. In this letter, an advanced network named Conformer is first introduced for CSI compression, which combines self-attention mechanisms and convolution to efficiently extract both global and detailed CSI features. In order to further reduce the feedback overhead, we also propose a vector quantization scheme based on the discrete latent representation of the vector quantised-variational autoencoder (VQ-VAE), namely VQCFB. Integrating Conformer blocks with VQCFB, the proposed encoder-quantizer-decoder framework achieves high-quality CSI reconstruction with low feedback overhead, outperforming previous state-of-the-art networks.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"28 11","pages":"2648-2652"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Network With Discrete Latent Representation Designed for Massive MIMO CSI Feedback\",\"authors\":\"Xinran Sun;Zhengming Zhang;Chunguo Li;Yongming Huang;Luxi Yang\",\"doi\":\"10.1109/LCOMM.2024.3462977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficacy of massive multiple-input multiple-output techniques heavily relies on the accuracy of the downlink channel state information (CSI) in frequency division duplexing systems. Many works focus on CSI compression and quantization to enhance the CSI reconstruction accuracy with lower overhead of downlink pilots and uplink feedback. In this letter, an advanced network named Conformer is first introduced for CSI compression, which combines self-attention mechanisms and convolution to efficiently extract both global and detailed CSI features. In order to further reduce the feedback overhead, we also propose a vector quantization scheme based on the discrete latent representation of the vector quantised-variational autoencoder (VQ-VAE), namely VQCFB. Integrating Conformer blocks with VQCFB, the proposed encoder-quantizer-decoder framework achieves high-quality CSI reconstruction with low feedback overhead, outperforming previous state-of-the-art networks.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"28 11\",\"pages\":\"2648-2652\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683739/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10683739/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
An Effective Network With Discrete Latent Representation Designed for Massive MIMO CSI Feedback
The efficacy of massive multiple-input multiple-output techniques heavily relies on the accuracy of the downlink channel state information (CSI) in frequency division duplexing systems. Many works focus on CSI compression and quantization to enhance the CSI reconstruction accuracy with lower overhead of downlink pilots and uplink feedback. In this letter, an advanced network named Conformer is first introduced for CSI compression, which combines self-attention mechanisms and convolution to efficiently extract both global and detailed CSI features. In order to further reduce the feedback overhead, we also propose a vector quantization scheme based on the discrete latent representation of the vector quantised-variational autoencoder (VQ-VAE), namely VQCFB. Integrating Conformer blocks with VQCFB, the proposed encoder-quantizer-decoder framework achieves high-quality CSI reconstruction with low feedback overhead, outperforming previous state-of-the-art networks.
期刊介绍:
The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.