{"title":"芘基共价有机框架 (PyCOF):综述","authors":"Hao Yang, Shiqiong Peng, Songhua Chen, Fangyuan Kang, Jun Fan, Huan Zhang, Xianglin Yu, Junbo Li, Qichun Zhang","doi":"10.1039/d4nh00317a","DOIUrl":null,"url":null,"abstract":"Recently, pyrene-based covalent organic frameworks (PyCOFs) have aroused great interesting because the large planar structure of pyrene unit could effectively enhance the interlayer π-π interaction and promote the separation and migration of carriers, significantly improving the crystallinity and photoelectrical properties of PyCOFs. Since the first PyCOF-containing boroxate linkage was reported in 2008 by Yaghi group, many PyCOFs with different kinds of linkages have been reported, exhibiting great potential applications in different fields such as adsorption/separation, chemical sensing, catalysis, and energy storage etc. However, as far as we know, the reviews related to PyCOFs are rare, although PyCOFs have been widely reported to show promising applications. Thus, it is right time and important for us to systematically summarize the research advance in PyCOFs, including the synthesis with different linkages and applications. Moreover, the prospects and obstacles facing the development of PyCOFs are discussed. We hope that this review will provide new insights into PyCOFs that can be explored for more attractive functions or applications.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrene-based Covalent Organic Frameworks (PyCOFs): A Review\",\"authors\":\"Hao Yang, Shiqiong Peng, Songhua Chen, Fangyuan Kang, Jun Fan, Huan Zhang, Xianglin Yu, Junbo Li, Qichun Zhang\",\"doi\":\"10.1039/d4nh00317a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, pyrene-based covalent organic frameworks (PyCOFs) have aroused great interesting because the large planar structure of pyrene unit could effectively enhance the interlayer π-π interaction and promote the separation and migration of carriers, significantly improving the crystallinity and photoelectrical properties of PyCOFs. Since the first PyCOF-containing boroxate linkage was reported in 2008 by Yaghi group, many PyCOFs with different kinds of linkages have been reported, exhibiting great potential applications in different fields such as adsorption/separation, chemical sensing, catalysis, and energy storage etc. However, as far as we know, the reviews related to PyCOFs are rare, although PyCOFs have been widely reported to show promising applications. Thus, it is right time and important for us to systematically summarize the research advance in PyCOFs, including the synthesis with different linkages and applications. Moreover, the prospects and obstacles facing the development of PyCOFs are discussed. We hope that this review will provide new insights into PyCOFs that can be explored for more attractive functions or applications.\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4nh00317a\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00317a","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Pyrene-based Covalent Organic Frameworks (PyCOFs): A Review
Recently, pyrene-based covalent organic frameworks (PyCOFs) have aroused great interesting because the large planar structure of pyrene unit could effectively enhance the interlayer π-π interaction and promote the separation and migration of carriers, significantly improving the crystallinity and photoelectrical properties of PyCOFs. Since the first PyCOF-containing boroxate linkage was reported in 2008 by Yaghi group, many PyCOFs with different kinds of linkages have been reported, exhibiting great potential applications in different fields such as adsorption/separation, chemical sensing, catalysis, and energy storage etc. However, as far as we know, the reviews related to PyCOFs are rare, although PyCOFs have been widely reported to show promising applications. Thus, it is right time and important for us to systematically summarize the research advance in PyCOFs, including the synthesis with different linkages and applications. Moreover, the prospects and obstacles facing the development of PyCOFs are discussed. We hope that this review will provide new insights into PyCOFs that can be explored for more attractive functions or applications.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture