Krisna Adhitya, Tika Mustika, Maykel Manawan, Ika Maria Ulfah, Razie Hanafi, Iwan Setyadi, Suryadi, Arif Hidayat, Mirza Wibisono, Joni Sah, Giri Wahyu Alam, Muslim Efendi Harahap, Hadi Prianto Sulaikan, Nandang Suhendra, I Nyoman Jujur
{"title":"优化牙科植入物用纯钛的表面特性:喷砂和酸蚀技术的结晶学分析","authors":"Krisna Adhitya, Tika Mustika, Maykel Manawan, Ika Maria Ulfah, Razie Hanafi, Iwan Setyadi, Suryadi, Arif Hidayat, Mirza Wibisono, Joni Sah, Giri Wahyu Alam, Muslim Efendi Harahap, Hadi Prianto Sulaikan, Nandang Suhendra, I Nyoman Jujur","doi":"10.1017/s0885715624000320","DOIUrl":null,"url":null,"abstract":"<p>Surface roughness is a critical factor affecting the performance of dental implants. One approach to influence this is through sandblasted, large grit, acid-etched (SLA) modification on pure titanium implant surfaces. In this study, SLA was performed on grade IV pure titanium. Sandblasting was conducted at distances of 2, 4, and 6 cm. Subsequently, the samples were etched with a mixed acid solution of HCl, H<span>2</span>SO<span>4</span>, and H<span>2</span>O for 0, 30, and 60 min. Surface roughness and X-ray diffraction (XRD) characterizations were conducted on the samples. The results revealed that surface roughness increased but was not too significant as the sandblasting distance decreased. Longer etching durations for sandblasted with acid-etched samples led to reduced surface roughness (<span>Sa</span> and <span>Sz</span>). It was found that a 60 min-etched sample resulted in optimal <span>Sa</span>, <span>Sz</span>, and <span>Ssk</span> values, i.e., 1.19 μm, 13.76 μm, and −0.60, respectively. The XRD texture was significantly influenced by sandblasting, with compressive residual stress increasing as the sandblasting distance decreased. Normal stress causes hill formations at shorter sandblasting distances. For etched samples, the residual stress decreased with longer etching durations. Normal stress-decreasing trend aligns with the initial reduction in hill and valley within the samples and subsequent hill enhancement at extended etching duration.</p>","PeriodicalId":20333,"journal":{"name":"Powder Diffraction","volume":"31 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing surface properties in pure titanium for dental implants: a crystallographic analysis of sandblasting and acid-etching techniques\",\"authors\":\"Krisna Adhitya, Tika Mustika, Maykel Manawan, Ika Maria Ulfah, Razie Hanafi, Iwan Setyadi, Suryadi, Arif Hidayat, Mirza Wibisono, Joni Sah, Giri Wahyu Alam, Muslim Efendi Harahap, Hadi Prianto Sulaikan, Nandang Suhendra, I Nyoman Jujur\",\"doi\":\"10.1017/s0885715624000320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface roughness is a critical factor affecting the performance of dental implants. One approach to influence this is through sandblasted, large grit, acid-etched (SLA) modification on pure titanium implant surfaces. In this study, SLA was performed on grade IV pure titanium. Sandblasting was conducted at distances of 2, 4, and 6 cm. Subsequently, the samples were etched with a mixed acid solution of HCl, H<span>2</span>SO<span>4</span>, and H<span>2</span>O for 0, 30, and 60 min. Surface roughness and X-ray diffraction (XRD) characterizations were conducted on the samples. The results revealed that surface roughness increased but was not too significant as the sandblasting distance decreased. Longer etching durations for sandblasted with acid-etched samples led to reduced surface roughness (<span>Sa</span> and <span>Sz</span>). It was found that a 60 min-etched sample resulted in optimal <span>Sa</span>, <span>Sz</span>, and <span>Ssk</span> values, i.e., 1.19 μm, 13.76 μm, and −0.60, respectively. The XRD texture was significantly influenced by sandblasting, with compressive residual stress increasing as the sandblasting distance decreased. Normal stress causes hill formations at shorter sandblasting distances. For etched samples, the residual stress decreased with longer etching durations. Normal stress-decreasing trend aligns with the initial reduction in hill and valley within the samples and subsequent hill enhancement at extended etching duration.</p>\",\"PeriodicalId\":20333,\"journal\":{\"name\":\"Powder Diffraction\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Diffraction\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1017/s0885715624000320\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Diffraction","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1017/s0885715624000320","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Optimizing surface properties in pure titanium for dental implants: a crystallographic analysis of sandblasting and acid-etching techniques
Surface roughness is a critical factor affecting the performance of dental implants. One approach to influence this is through sandblasted, large grit, acid-etched (SLA) modification on pure titanium implant surfaces. In this study, SLA was performed on grade IV pure titanium. Sandblasting was conducted at distances of 2, 4, and 6 cm. Subsequently, the samples were etched with a mixed acid solution of HCl, H2SO4, and H2O for 0, 30, and 60 min. Surface roughness and X-ray diffraction (XRD) characterizations were conducted on the samples. The results revealed that surface roughness increased but was not too significant as the sandblasting distance decreased. Longer etching durations for sandblasted with acid-etched samples led to reduced surface roughness (Sa and Sz). It was found that a 60 min-etched sample resulted in optimal Sa, Sz, and Ssk values, i.e., 1.19 μm, 13.76 μm, and −0.60, respectively. The XRD texture was significantly influenced by sandblasting, with compressive residual stress increasing as the sandblasting distance decreased. Normal stress causes hill formations at shorter sandblasting distances. For etched samples, the residual stress decreased with longer etching durations. Normal stress-decreasing trend aligns with the initial reduction in hill and valley within the samples and subsequent hill enhancement at extended etching duration.
期刊介绍:
Powder Diffraction is a quarterly journal publishing articles, both experimental and theoretical, on the use of powder diffraction and related techniques for the characterization of crystalline materials. It is published by Cambridge University Press (CUP) for the International Centre for Diffraction Data (ICDD).