Kavita Singh, Shraddha I. Khairnar, Akshay Sanghavi, Tanuja T. Yadav, Neha Gupta, Jay Arora, Harold L. Katcher
{"title":"E5 治疗显示老龄 Sprague Dawley 大鼠的健康寿命和寿命得到改善","authors":"Kavita Singh, Shraddha I. Khairnar, Akshay Sanghavi, Tanuja T. Yadav, Neha Gupta, Jay Arora, Harold L. Katcher","doi":"10.1111/acel.14335","DOIUrl":null,"url":null,"abstract":"Aging and, in particular, the emergence of age-related disorders is associated with tissue dysfunction and macromolecular damage, some of which can be attributable to accumulated oxidative damage. In the current study, we determine the potential of ‘plasma-derived fraction (E5)’ for cellular rejuvenation and extending the lifespan of Sprague Dawley (SD) rats. This is a unique study wherein we have used 24-month-old rats and monitored them until the end of their lifespan with and without E5 treatment. In the present investigation, the SD rats were separated into two groups old control group and the treatment group (<i>n</i> = 8). The treatment group received four injections of E5 every alternate day for 8 days, and eight injections every alternate day for 16 days. Body weight, grip strength, cytokines, and biochemical markers were measured for more than 400 days of the study. Clinical observation, necropsy, and histology were performed. The E5 treatment exhibited great potential by showing significantly improved grip strength, remarkably decreased pro-inflammatory markers of chronic inflammation and oxidative stress, as well as biomarkers for vital organs (BUN, SGPT, SGOT, and triglycerides), and increased anti-oxidant levels. Clinical examinations, necropsies, and histopathology revealed that the animals treated with the E5 had normal cellular structure and architecture. In conclusion, this unique ‘plasma-derived exosome’ treatment (E5) alone is adequate to improve the health-span and extend the lifespan of the old SD rats significantly.","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E5 treatment showing improved health-span and lifespan in old Sprague Dawley rats\",\"authors\":\"Kavita Singh, Shraddha I. Khairnar, Akshay Sanghavi, Tanuja T. Yadav, Neha Gupta, Jay Arora, Harold L. Katcher\",\"doi\":\"10.1111/acel.14335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aging and, in particular, the emergence of age-related disorders is associated with tissue dysfunction and macromolecular damage, some of which can be attributable to accumulated oxidative damage. In the current study, we determine the potential of ‘plasma-derived fraction (E5)’ for cellular rejuvenation and extending the lifespan of Sprague Dawley (SD) rats. This is a unique study wherein we have used 24-month-old rats and monitored them until the end of their lifespan with and without E5 treatment. In the present investigation, the SD rats were separated into two groups old control group and the treatment group (<i>n</i> = 8). The treatment group received four injections of E5 every alternate day for 8 days, and eight injections every alternate day for 16 days. Body weight, grip strength, cytokines, and biochemical markers were measured for more than 400 days of the study. Clinical observation, necropsy, and histology were performed. The E5 treatment exhibited great potential by showing significantly improved grip strength, remarkably decreased pro-inflammatory markers of chronic inflammation and oxidative stress, as well as biomarkers for vital organs (BUN, SGPT, SGOT, and triglycerides), and increased anti-oxidant levels. Clinical examinations, necropsies, and histopathology revealed that the animals treated with the E5 had normal cellular structure and architecture. In conclusion, this unique ‘plasma-derived exosome’ treatment (E5) alone is adequate to improve the health-span and extend the lifespan of the old SD rats significantly.\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/acel.14335\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14335","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
E5 treatment showing improved health-span and lifespan in old Sprague Dawley rats
Aging and, in particular, the emergence of age-related disorders is associated with tissue dysfunction and macromolecular damage, some of which can be attributable to accumulated oxidative damage. In the current study, we determine the potential of ‘plasma-derived fraction (E5)’ for cellular rejuvenation and extending the lifespan of Sprague Dawley (SD) rats. This is a unique study wherein we have used 24-month-old rats and monitored them until the end of their lifespan with and without E5 treatment. In the present investigation, the SD rats were separated into two groups old control group and the treatment group (n = 8). The treatment group received four injections of E5 every alternate day for 8 days, and eight injections every alternate day for 16 days. Body weight, grip strength, cytokines, and biochemical markers were measured for more than 400 days of the study. Clinical observation, necropsy, and histology were performed. The E5 treatment exhibited great potential by showing significantly improved grip strength, remarkably decreased pro-inflammatory markers of chronic inflammation and oxidative stress, as well as biomarkers for vital organs (BUN, SGPT, SGOT, and triglycerides), and increased anti-oxidant levels. Clinical examinations, necropsies, and histopathology revealed that the animals treated with the E5 had normal cellular structure and architecture. In conclusion, this unique ‘plasma-derived exosome’ treatment (E5) alone is adequate to improve the health-span and extend the lifespan of the old SD rats significantly.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.