计算动力系统

Jordan Cotler, Semon Rezchikov
{"title":"计算动力系统","authors":"Jordan Cotler, Semon Rezchikov","doi":"arxiv-2409.12179","DOIUrl":null,"url":null,"abstract":"We study the computational complexity theory of smooth, finite-dimensional\ndynamical systems. Building off of previous work, we give definitions for what\nit means for a smooth dynamical system to simulate a Turing machine. We then\nshow that 'chaotic' dynamical systems (more precisely, Axiom A systems) and\n'integrable' dynamical systems (more generally, measure-preserving systems)\ncannot robustly simulate universal Turing machines, although such machines can\nbe robustly simulated by other kinds of dynamical systems. Subsequently, we\nshow that any Turing machine that can be encoded into a structurally stable\none-dimensional dynamical system must have a decidable halting problem, and\nmoreover an explicit time complexity bound in instances where it does halt.\nMore broadly, our work elucidates what it means for one 'machine' to simulate\nanother, and emphasizes the necessity of defining low-complexity 'encoders' and\n'decoders' to translate between the dynamics of the simulation and the system\nbeing simulated. We highlight how the notion of a computational dynamical\nsystem leads to questions at the intersection of computational complexity\ntheory, dynamical systems theory, and real algebraic geometry.","PeriodicalId":501035,"journal":{"name":"arXiv - MATH - Dynamical Systems","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Dynamical Systems\",\"authors\":\"Jordan Cotler, Semon Rezchikov\",\"doi\":\"arxiv-2409.12179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the computational complexity theory of smooth, finite-dimensional\\ndynamical systems. Building off of previous work, we give definitions for what\\nit means for a smooth dynamical system to simulate a Turing machine. We then\\nshow that 'chaotic' dynamical systems (more precisely, Axiom A systems) and\\n'integrable' dynamical systems (more generally, measure-preserving systems)\\ncannot robustly simulate universal Turing machines, although such machines can\\nbe robustly simulated by other kinds of dynamical systems. Subsequently, we\\nshow that any Turing machine that can be encoded into a structurally stable\\none-dimensional dynamical system must have a decidable halting problem, and\\nmoreover an explicit time complexity bound in instances where it does halt.\\nMore broadly, our work elucidates what it means for one 'machine' to simulate\\nanother, and emphasizes the necessity of defining low-complexity 'encoders' and\\n'decoders' to translate between the dynamics of the simulation and the system\\nbeing simulated. We highlight how the notion of a computational dynamical\\nsystem leads to questions at the intersection of computational complexity\\ntheory, dynamical systems theory, and real algebraic geometry.\",\"PeriodicalId\":501035,\"journal\":{\"name\":\"arXiv - MATH - Dynamical Systems\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Dynamical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究平滑、有限维动态系统的计算复杂性理论。在以往工作的基础上,我们给出了平滑动力系统模拟图灵机的定义。然后,我们证明了 "混沌 "动力系统(更准确地说,是公理 A 系统)和 "可积分 "动力系统(更广义地说,是保度量系统)不能稳健地模拟通用图灵机,尽管这种机器可以被其他类型的动力系统稳健地模拟。更广泛地说,我们的工作阐明了一个 "机器 "模拟另一个 "机器 "的含义,并强调了定义低复杂度 "编码器 "和 "解码器 "以在模拟的动力学和被模拟的系统之间进行转换的必要性。我们强调计算动力系统的概念如何引出计算复杂性理论、动力系统理论和实代数几何的交叉问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Dynamical Systems
We study the computational complexity theory of smooth, finite-dimensional dynamical systems. Building off of previous work, we give definitions for what it means for a smooth dynamical system to simulate a Turing machine. We then show that 'chaotic' dynamical systems (more precisely, Axiom A systems) and 'integrable' dynamical systems (more generally, measure-preserving systems) cannot robustly simulate universal Turing machines, although such machines can be robustly simulated by other kinds of dynamical systems. Subsequently, we show that any Turing machine that can be encoded into a structurally stable one-dimensional dynamical system must have a decidable halting problem, and moreover an explicit time complexity bound in instances where it does halt. More broadly, our work elucidates what it means for one 'machine' to simulate another, and emphasizes the necessity of defining low-complexity 'encoders' and 'decoders' to translate between the dynamics of the simulation and the system being simulated. We highlight how the notion of a computational dynamical system leads to questions at the intersection of computational complexity theory, dynamical systems theory, and real algebraic geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ergodic properties of infinite extension of symmetric interval exchange transformations Existence and explicit formula for a semigroup related to some network problems with unbounded edges Meromorphic functions whose action on their Julia sets is Non-Ergodic Computational Dynamical Systems Spectral clustering of time-evolving networks using the inflated dynamic Laplacian for graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1