以降雨量 KDP 为基准:利用 C 波段天气雷达观测数据对估算算法进行定量评估

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Measurement Techniques Pub Date : 2024-09-18 DOI:10.5194/amt-2024-155
Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, Dmitri Moisseev
{"title":"以降雨量 KDP 为基准:利用 C 波段天气雷达观测数据对估算算法进行定量评估","authors":"Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, Dmitri Moisseev","doi":"10.5194/amt-2024-155","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Accurate and precise <em>K<sub>DP</sub></em> estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured Φ<sub><em>DP</em></sub>, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available <em>K<sub>DP</sub></em> estimation methods implemented in open-source libraries such as PyArt and Wradlib, and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates <em>K<sub>DP</sub></em> to reflectivity and differential reflectivity in rain, providing a reference self-consistency <em>K<sub>DP </sub></em> (K<em style=\"position: relative;\"><sub>DP</sub><sup style=\"position: absolute; top: 0px; left: 2px;\">SC</sup> </em>) for comparison. This approach allows for the construction of the reference <em>K<sub>DP</sub></em> observations that can be used to assess the accuracy and robustness of the studied <em>K<sub>DP</sub></em> estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations where the reflectivity values ranged between 20 and 50 dBZ. Using the proposed evaluation framework we could define optimized parameter settings for the methods that have user-configurable parameters. Most of such methods showed significant reduction in the estimation errors after the optimization with respect to the default settings. We have found significant differences in the performances of the studied methods, where the best performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root mean squared errors across the range of reflectivity values.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"52 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations\",\"authors\":\"Miguel Aldana, Seppo Pulkkinen, Annakaisa von Lerber, Matthew R. Kumjian, Dmitri Moisseev\",\"doi\":\"10.5194/amt-2024-155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Accurate and precise <em>K<sub>DP</sub></em> estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured Φ<sub><em>DP</em></sub>, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available <em>K<sub>DP</sub></em> estimation methods implemented in open-source libraries such as PyArt and Wradlib, and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates <em>K<sub>DP</sub></em> to reflectivity and differential reflectivity in rain, providing a reference self-consistency <em>K<sub>DP </sub></em> (K<em style=\\\"position: relative;\\\"><sub>DP</sub><sup style=\\\"position: absolute; top: 0px; left: 2px;\\\">SC</sup> </em>) for comparison. This approach allows for the construction of the reference <em>K<sub>DP</sub></em> observations that can be used to assess the accuracy and robustness of the studied <em>K<sub>DP</sub></em> estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations where the reflectivity values ranged between 20 and 50 dBZ. Using the proposed evaluation framework we could define optimized parameter settings for the methods that have user-configurable parameters. Most of such methods showed significant reduction in the estimation errors after the optimization with respect to the default settings. We have found significant differences in the performances of the studied methods, where the best performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root mean squared errors across the range of reflectivity values.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-2024-155\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-2024-155","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要。准确和精确的 KDP 估计值对于基于雷达的应用至关重要,尤其是在定量降水估计和雷达数据质量控制程序中。这些估计值的准确性在很大程度上取决于对雷达测得的ΦDP 的后处理,其目的是减少噪声和后向散射效应,同时保留细尺度降水特征。在本研究中,我们评估了 PyArt 和 Wradlib 等开源库中实现的几种公开可用的 KDP 估算方法的性能,以及维萨拉天气雷达使用的方法。为了对这些方法进行基准测试,我们采用了极坐标自洽方法,该方法将 KDP 与雨中的反射率和差分反射率联系起来,提供了一个参考自洽 KDP (KDPSC) 供比较。通过这种方法可以构建参考 KDP 观测数据,用于评估所研究的 KDP 估算方法的准确性和稳健性。我们使用 C 波段气象雷达观测数据对每种方法的不确定性进行量化评估,这些观测数据的反射率值在 20 到 50 dBZ 之间。利用提出的评估框架,我们可以为用户可配置参数的方法定义优化参数设置。与默认设置相比,大多数此类方法在优化后都能显著减少估计误差。我们发现所研究方法的性能存在显著差异,其中性能最好的方法在高反射率值(即≥ 40 dBZ)下显示出较小的归一化偏差,并且在整个反射率值范围内显示出较小的归一化均方根误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations
Abstract. Accurate and precise KDP estimates are essential for radar-based applications, especially in quantitative precipitation estimation and radar data quality control routines. The accuracy of these estimates largely depends on the post-processing of the radar's measured ΦDP, which aims to reduce noise and backscattering effects while preserving fine-scale precipitation features. In this study, we evaluate the performance of several publicly available KDP estimation methods implemented in open-source libraries such as PyArt and Wradlib, and the method used in the Vaisala weather radars. To benchmark these methods, we employ a polarimetric self-consistency approach that relates KDP to reflectivity and differential reflectivity in rain, providing a reference self-consistency KDP  (KDPSC ) for comparison. This approach allows for the construction of the reference KDP observations that can be used to assess the accuracy and robustness of the studied KDP estimation methods. We assess each method by quantifying uncertainties using C-band weather radar observations where the reflectivity values ranged between 20 and 50 dBZ. Using the proposed evaluation framework we could define optimized parameter settings for the methods that have user-configurable parameters. Most of such methods showed significant reduction in the estimation errors after the optimization with respect to the default settings. We have found significant differences in the performances of the studied methods, where the best performing methods showed smaller normalized biases in the high reflectivity values (i.e., ≥ 40 dBZ) and overall smaller normalized root mean squared errors across the range of reflectivity values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
期刊最新文献
Analyzing the chemical composition, morphology and size of ice-nucleating particles by coupling a scanning electron microscope to an offline diffusion chamber Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations Advances in OH reactivity instruments for airborne field measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1