Da Yang, Emmanuel Assaf, Roy Mauldin, Suresh Dhaniyala, Rainer Volkamer
{"title":"层流气体入口 - 第 2 部分:风洞化学传输测量和建模","authors":"Da Yang, Emmanuel Assaf, Roy Mauldin, Suresh Dhaniyala, Rainer Volkamer","doi":"10.5194/egusphere-2024-2390","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Aircraft-based measurements of gas-phase species and aerosols provide crucial knowledge about the composition and vertical structure of the atmosphere, enhancing the study of atmospheric physics and chemistry. Unlike aircraft-based aerosol particle sampling systems, the gas loss mechanisms and transmission efficiency of aircraft-based gas sampling systems are rarely discussed. In particular, the gas transmission of condensable vapors through these sampling systems requires systematic study to clarify the key factors of gas loss and to predict and improve gas sampling efficiency quantitatively. An aircraft gas inlet for aircraft-based laminar sampling of condensable vapors is described in part 1 (Yang et al., 2024), which describes the inlet dimensions, flow analysis and modelling, along with initial gas transmission estimates. Here we test and characterize the complete inflight sampling system using for gas-phase measurements of 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> in a high-speed wind tunnel, and conduct detailed computer fluid dynamics (CFD) simulations to assess inlet performance under a range of flight conditions. The gas transmission efficiency of 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> through different sampling lines was measured using Chemical Ionization Mass Spectrometry (CIMS), and the experimental results are reproduced by the CFD simulations of flow and mass diffusion using a mass accommodation coefficient, 𝛼<sub>𝑖 </sub>= 0.70 ± 0.05 for 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> on inlet lines. The experimental data and simulation results show consistently that gas transmission efficiency increases with an increased sampling flow rate. The simulation results further indicate that sampling efficiency can continue to improve to a certain level after the sampling flow enters the turbulent flow regime, up to Reynolds numbers, Re ~ 6000. A decrease in transmission is predicted only for higher Re numbers. These results challenge the widely held assumption that laminar flow core sampling is the best strategy for sampling condensable vapors. The gas-phase 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> transmission efficiency can be optimized (increased by a factor ~2) by minimizing residence time, rather than maintaining laminar flow; this benefit extends to other condensable vapors and applies over the full range of operating conditions of the aircraft inlet system. For a sticky species (𝛼<sub>𝑖 </sub>> 0.25), the laminar diffusivity is important to predict the transmission efficiency via the aircraft inlet section, while for less sticky species (𝛼<sub>𝑖 </sub>< 0.25) the gas-phase diffusivity plays a minor role in predicting the gas transmission efficiency in the sampling line.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"191 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laminar gas inlet – Part 2: Wind tunnel chemical transmission measurement and modelling\",\"authors\":\"Da Yang, Emmanuel Assaf, Roy Mauldin, Suresh Dhaniyala, Rainer Volkamer\",\"doi\":\"10.5194/egusphere-2024-2390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Aircraft-based measurements of gas-phase species and aerosols provide crucial knowledge about the composition and vertical structure of the atmosphere, enhancing the study of atmospheric physics and chemistry. Unlike aircraft-based aerosol particle sampling systems, the gas loss mechanisms and transmission efficiency of aircraft-based gas sampling systems are rarely discussed. In particular, the gas transmission of condensable vapors through these sampling systems requires systematic study to clarify the key factors of gas loss and to predict and improve gas sampling efficiency quantitatively. An aircraft gas inlet for aircraft-based laminar sampling of condensable vapors is described in part 1 (Yang et al., 2024), which describes the inlet dimensions, flow analysis and modelling, along with initial gas transmission estimates. Here we test and characterize the complete inflight sampling system using for gas-phase measurements of 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> in a high-speed wind tunnel, and conduct detailed computer fluid dynamics (CFD) simulations to assess inlet performance under a range of flight conditions. The gas transmission efficiency of 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> through different sampling lines was measured using Chemical Ionization Mass Spectrometry (CIMS), and the experimental results are reproduced by the CFD simulations of flow and mass diffusion using a mass accommodation coefficient, 𝛼<sub>𝑖 </sub>= 0.70 ± 0.05 for 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> on inlet lines. The experimental data and simulation results show consistently that gas transmission efficiency increases with an increased sampling flow rate. The simulation results further indicate that sampling efficiency can continue to improve to a certain level after the sampling flow enters the turbulent flow regime, up to Reynolds numbers, Re ~ 6000. A decrease in transmission is predicted only for higher Re numbers. These results challenge the widely held assumption that laminar flow core sampling is the best strategy for sampling condensable vapors. The gas-phase 𝐻<sub>2</sub>𝑆𝑂<sub>4</sub> transmission efficiency can be optimized (increased by a factor ~2) by minimizing residence time, rather than maintaining laminar flow; this benefit extends to other condensable vapors and applies over the full range of operating conditions of the aircraft inlet system. For a sticky species (𝛼<sub>𝑖 </sub>> 0.25), the laminar diffusivity is important to predict the transmission efficiency via the aircraft inlet section, while for less sticky species (𝛼<sub>𝑖 </sub>< 0.25) the gas-phase diffusivity plays a minor role in predicting the gas transmission efficiency in the sampling line.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2390\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2390","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Laminar gas inlet – Part 2: Wind tunnel chemical transmission measurement and modelling
Abstract. Aircraft-based measurements of gas-phase species and aerosols provide crucial knowledge about the composition and vertical structure of the atmosphere, enhancing the study of atmospheric physics and chemistry. Unlike aircraft-based aerosol particle sampling systems, the gas loss mechanisms and transmission efficiency of aircraft-based gas sampling systems are rarely discussed. In particular, the gas transmission of condensable vapors through these sampling systems requires systematic study to clarify the key factors of gas loss and to predict and improve gas sampling efficiency quantitatively. An aircraft gas inlet for aircraft-based laminar sampling of condensable vapors is described in part 1 (Yang et al., 2024), which describes the inlet dimensions, flow analysis and modelling, along with initial gas transmission estimates. Here we test and characterize the complete inflight sampling system using for gas-phase measurements of 𝐻2𝑆𝑂4 in a high-speed wind tunnel, and conduct detailed computer fluid dynamics (CFD) simulations to assess inlet performance under a range of flight conditions. The gas transmission efficiency of 𝐻2𝑆𝑂4 through different sampling lines was measured using Chemical Ionization Mass Spectrometry (CIMS), and the experimental results are reproduced by the CFD simulations of flow and mass diffusion using a mass accommodation coefficient, 𝛼𝑖 = 0.70 ± 0.05 for 𝐻2𝑆𝑂4 on inlet lines. The experimental data and simulation results show consistently that gas transmission efficiency increases with an increased sampling flow rate. The simulation results further indicate that sampling efficiency can continue to improve to a certain level after the sampling flow enters the turbulent flow regime, up to Reynolds numbers, Re ~ 6000. A decrease in transmission is predicted only for higher Re numbers. These results challenge the widely held assumption that laminar flow core sampling is the best strategy for sampling condensable vapors. The gas-phase 𝐻2𝑆𝑂4 transmission efficiency can be optimized (increased by a factor ~2) by minimizing residence time, rather than maintaining laminar flow; this benefit extends to other condensable vapors and applies over the full range of operating conditions of the aircraft inlet system. For a sticky species (𝛼𝑖 > 0.25), the laminar diffusivity is important to predict the transmission efficiency via the aircraft inlet section, while for less sticky species (𝛼𝑖 < 0.25) the gas-phase diffusivity plays a minor role in predicting the gas transmission efficiency in the sampling line.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.