利用帧-事件融合网络以高帧频跟踪任意点

Jiaxiong Liu, Bo Wang, Zhen Tan, Jinpu Zhang, Hui Shen, Dewen Hu
{"title":"利用帧-事件融合网络以高帧频跟踪任意点","authors":"Jiaxiong Liu, Bo Wang, Zhen Tan, Jinpu Zhang, Hui Shen, Dewen Hu","doi":"arxiv-2409.11953","DOIUrl":null,"url":null,"abstract":"Tracking any point based on image frames is constrained by frame rates,\nleading to instability in high-speed scenarios and limited generalization in\nreal-world applications. To overcome these limitations, we propose an\nimage-event fusion point tracker, FE-TAP, which combines the contextual\ninformation from image frames with the high temporal resolution of events,\nachieving high frame rate and robust point tracking under various challenging\nconditions. Specifically, we designed an Evolution Fusion module (EvoFusion) to\nmodel the image generation process guided by events. This module can\neffectively integrate valuable information from both modalities operating at\ndifferent frequencies. To achieve smoother point trajectories, we employed a\ntransformer-based refinement strategy that updates the point's trajectories and\nfeatures iteratively. Extensive experiments demonstrate that our method\noutperforms state-of-the-art approaches, particularly improving expected\nfeature age by 24$\\%$ on EDS datasets. Finally, we qualitatively validated the\nrobustness of our algorithm in real driving scenarios using our custom-designed\nhigh-resolution image-event synchronization device. Our source code will be\nreleased at https://github.com/ljx1002/FE-TAP.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking Any Point with Frame-Event Fusion Network at High Frame Rate\",\"authors\":\"Jiaxiong Liu, Bo Wang, Zhen Tan, Jinpu Zhang, Hui Shen, Dewen Hu\",\"doi\":\"arxiv-2409.11953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tracking any point based on image frames is constrained by frame rates,\\nleading to instability in high-speed scenarios and limited generalization in\\nreal-world applications. To overcome these limitations, we propose an\\nimage-event fusion point tracker, FE-TAP, which combines the contextual\\ninformation from image frames with the high temporal resolution of events,\\nachieving high frame rate and robust point tracking under various challenging\\nconditions. Specifically, we designed an Evolution Fusion module (EvoFusion) to\\nmodel the image generation process guided by events. This module can\\neffectively integrate valuable information from both modalities operating at\\ndifferent frequencies. To achieve smoother point trajectories, we employed a\\ntransformer-based refinement strategy that updates the point's trajectories and\\nfeatures iteratively. Extensive experiments demonstrate that our method\\noutperforms state-of-the-art approaches, particularly improving expected\\nfeature age by 24$\\\\%$ on EDS datasets. Finally, we qualitatively validated the\\nrobustness of our algorithm in real driving scenarios using our custom-designed\\nhigh-resolution image-event synchronization device. Our source code will be\\nreleased at https://github.com/ljx1002/FE-TAP.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于图像帧跟踪任何点都会受到帧速率的限制,从而导致在高速场景中的不稳定性以及在真实世界应用中的有限通用性。为了克服这些限制,我们提出了动画-事件融合点跟踪器 FE-TAP,它将来自图像帧的上下文信息与事件的高时间分辨率相结合,在各种具有挑战性的条件下实现了高帧率和稳健的点跟踪。具体来说,我们设计了一个进化融合模块(EvoFusion)来模拟由事件引导的图像生成过程。该模块可以有效地整合来自两种工作频率不同的模态的有价值信息。为了获得更平滑的点轨迹,我们采用了基于变换器的细化策略,迭代更新点的轨迹和特征。大量实验证明,我们的方法优于最先进的方法,特别是在 EDS 数据集上,预期特征年龄提高了 24%。最后,我们使用定制设计的高分辨率图像事件同步设备,在实际驾驶场景中定性验证了我们算法的稳健性。我们的源代码将发布在 https://github.com/ljx1002/FE-TAP 网站上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking Any Point with Frame-Event Fusion Network at High Frame Rate
Tracking any point based on image frames is constrained by frame rates, leading to instability in high-speed scenarios and limited generalization in real-world applications. To overcome these limitations, we propose an image-event fusion point tracker, FE-TAP, which combines the contextual information from image frames with the high temporal resolution of events, achieving high frame rate and robust point tracking under various challenging conditions. Specifically, we designed an Evolution Fusion module (EvoFusion) to model the image generation process guided by events. This module can effectively integrate valuable information from both modalities operating at different frequencies. To achieve smoother point trajectories, we employed a transformer-based refinement strategy that updates the point's trajectories and features iteratively. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches, particularly improving expected feature age by 24$\%$ on EDS datasets. Finally, we qualitatively validated the robustness of our algorithm in real driving scenarios using our custom-designed high-resolution image-event synchronization device. Our source code will be released at https://github.com/ljx1002/FE-TAP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1