Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, Vegard Nilsen
{"title":"结合商用微波中继器和天气雷达进行干雪和降雨分类","authors":"Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, Vegard Nilsen","doi":"10.5194/egusphere-2024-2625","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Differentiating between snow and rainfall is crucial for hydrological modeling and understanding. Commercial Microwave Links (CMLs) can provide accurate rainfall estimates for liquid precipitation, but show minimal signal attenuation during dry snow events, causing the CML time series during these periods to resemble non-precipitation periods. Weather radars can detect precipitation also for dry snow, yet, they struggle to accurately differentiate between precipitation types. This study introduces a new approach to improve rainfall and dry snow classification by combining weather radar precipitation detection with CML signal attenuation. Specifically, events where the radar detects precipitation, but the CML does not, are classified as dry snow. As a reference method we use weather radar, with the precipitation type identified by the dew point temperature at the CML location. Both methods were evaluated using ground measurements from disdrometers within 8 km of a CML, analysing data from 550 CMLs in December 2021 and 435 CMLs in June 2022. Our results show that using CMLs can enhance the classification of dry snow and rainfall, presenting an advantage over the reference method. Further, our research provides valuable insights into how precipitation at temperatures around zero degrees, such as sleet or wet snow, can affect CMLs, contributing to a better understanding of CML applications in colder climates.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"13 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining commercial microwave links and weather radar for classification of dry snow and rainfall\",\"authors\":\"Erlend Øydvin, Renaud Gaban, Jafet Andersson, Remco van de Beek, Mareile Astrid Wolff, Nils-Otto Kitterød, Christian Chwala, Vegard Nilsen\",\"doi\":\"10.5194/egusphere-2024-2625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Differentiating between snow and rainfall is crucial for hydrological modeling and understanding. Commercial Microwave Links (CMLs) can provide accurate rainfall estimates for liquid precipitation, but show minimal signal attenuation during dry snow events, causing the CML time series during these periods to resemble non-precipitation periods. Weather radars can detect precipitation also for dry snow, yet, they struggle to accurately differentiate between precipitation types. This study introduces a new approach to improve rainfall and dry snow classification by combining weather radar precipitation detection with CML signal attenuation. Specifically, events where the radar detects precipitation, but the CML does not, are classified as dry snow. As a reference method we use weather radar, with the precipitation type identified by the dew point temperature at the CML location. Both methods were evaluated using ground measurements from disdrometers within 8 km of a CML, analysing data from 550 CMLs in December 2021 and 435 CMLs in June 2022. Our results show that using CMLs can enhance the classification of dry snow and rainfall, presenting an advantage over the reference method. Further, our research provides valuable insights into how precipitation at temperatures around zero degrees, such as sleet or wet snow, can affect CMLs, contributing to a better understanding of CML applications in colder climates.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2625\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2625","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Combining commercial microwave links and weather radar for classification of dry snow and rainfall
Abstract. Differentiating between snow and rainfall is crucial for hydrological modeling and understanding. Commercial Microwave Links (CMLs) can provide accurate rainfall estimates for liquid precipitation, but show minimal signal attenuation during dry snow events, causing the CML time series during these periods to resemble non-precipitation periods. Weather radars can detect precipitation also for dry snow, yet, they struggle to accurately differentiate between precipitation types. This study introduces a new approach to improve rainfall and dry snow classification by combining weather radar precipitation detection with CML signal attenuation. Specifically, events where the radar detects precipitation, but the CML does not, are classified as dry snow. As a reference method we use weather radar, with the precipitation type identified by the dew point temperature at the CML location. Both methods were evaluated using ground measurements from disdrometers within 8 km of a CML, analysing data from 550 CMLs in December 2021 and 435 CMLs in June 2022. Our results show that using CMLs can enhance the classification of dry snow and rainfall, presenting an advantage over the reference method. Further, our research provides valuable insights into how precipitation at temperatures around zero degrees, such as sleet or wet snow, can affect CMLs, contributing to a better understanding of CML applications in colder climates.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.