MEHunter:基于变压器的长读数移动元素变异检测

IF 4.4 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Bioinformatics Pub Date : 2024-09-17 DOI:10.1093/bioinformatics/btae557
Tao Jiang, Zuji Zhou, Zhendong Zhang, Shuqi Cao, Yadong Wang, Yadong Liu
{"title":"MEHunter:基于变压器的长读数移动元素变异检测","authors":"Tao Jiang, Zuji Zhou, Zhendong Zhang, Shuqi Cao, Yadong Wang, Yadong Liu","doi":"10.1093/bioinformatics/btae557","DOIUrl":null,"url":null,"abstract":"Summary Mobile genetic elements (MEs) are heritable mutagens that significantly contribute to genetic diseases. The advent of long-read sequencing technologies, capable of resolving large DNA fragments, offers promising prospects for the comprehensive detection of ME variants (MEVs). However, achieving high precision while maintaining recall performance remains challenging mainly brought by the variable length and similar content of MEV signatures, which are often obscured by the noise in long reads. Here, we propose MEHunter, a high-performance MEV detection approach utilizing a fine-tuned transformer model adept at identifying potential MEVs with fragmented features. Benchmark experiments on both simulated and real datasets demonstrate that MEHunter consistently achieves higher accuracy and sensitivity than the state-of-the-art tools. Furthermore, it is capable of detecting novel potentially individual-specific MEVs that have been overlooked in published population projects. Availability and Implementation MEHunter is available from https://github.com/120L021101/MEHunter. Supplementary information Supplementary data are available at Bioinformatics online.","PeriodicalId":8903,"journal":{"name":"Bioinformatics","volume":"9 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MEHunter: Transformer-based mobile element variant detection from long reads\",\"authors\":\"Tao Jiang, Zuji Zhou, Zhendong Zhang, Shuqi Cao, Yadong Wang, Yadong Liu\",\"doi\":\"10.1093/bioinformatics/btae557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Mobile genetic elements (MEs) are heritable mutagens that significantly contribute to genetic diseases. The advent of long-read sequencing technologies, capable of resolving large DNA fragments, offers promising prospects for the comprehensive detection of ME variants (MEVs). However, achieving high precision while maintaining recall performance remains challenging mainly brought by the variable length and similar content of MEV signatures, which are often obscured by the noise in long reads. Here, we propose MEHunter, a high-performance MEV detection approach utilizing a fine-tuned transformer model adept at identifying potential MEVs with fragmented features. Benchmark experiments on both simulated and real datasets demonstrate that MEHunter consistently achieves higher accuracy and sensitivity than the state-of-the-art tools. Furthermore, it is capable of detecting novel potentially individual-specific MEVs that have been overlooked in published population projects. Availability and Implementation MEHunter is available from https://github.com/120L021101/MEHunter. Supplementary information Supplementary data are available at Bioinformatics online.\",\"PeriodicalId\":8903,\"journal\":{\"name\":\"Bioinformatics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae557\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae557","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 移动遗传因子(MEs)是一种可遗传的变异体,对遗传疾病的发生有重要影响。长线程测序技术能够解析大的 DNA 片段,它的出现为全面检测移动遗传因子变异(MEVs)提供了广阔的前景。然而,在保持召回性能的同时实现高精度仍然具有挑战性,这主要是由于 MEV 特征的长度不一且内容相似,常常被长读数中的噪声所掩盖。在此,我们提出了 MEHunter,这是一种高性能 MEV 检测方法,它利用微调变压器模型,善于识别具有片段特征的潜在 MEV。在模拟和真实数据集上进行的基准实验表明,MEHunter 的准确性和灵敏度始终高于最先进的工具。此外,MEHunter 还能检测在已发表的群体项目中被忽视的新的潜在个体特异性 MEV。可用性和实施 MEHunter 可从 https://github.com/120L021101/MEHunter 获取。补充信息 补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEHunter: Transformer-based mobile element variant detection from long reads
Summary Mobile genetic elements (MEs) are heritable mutagens that significantly contribute to genetic diseases. The advent of long-read sequencing technologies, capable of resolving large DNA fragments, offers promising prospects for the comprehensive detection of ME variants (MEVs). However, achieving high precision while maintaining recall performance remains challenging mainly brought by the variable length and similar content of MEV signatures, which are often obscured by the noise in long reads. Here, we propose MEHunter, a high-performance MEV detection approach utilizing a fine-tuned transformer model adept at identifying potential MEVs with fragmented features. Benchmark experiments on both simulated and real datasets demonstrate that MEHunter consistently achieves higher accuracy and sensitivity than the state-of-the-art tools. Furthermore, it is capable of detecting novel potentially individual-specific MEVs that have been overlooked in published population projects. Availability and Implementation MEHunter is available from https://github.com/120L021101/MEHunter. Supplementary information Supplementary data are available at Bioinformatics online.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinformatics
Bioinformatics 生物-生化研究方法
CiteScore
11.20
自引率
5.20%
发文量
753
审稿时长
2.1 months
期刊介绍: The leading journal in its field, Bioinformatics publishes the highest quality scientific papers and review articles of interest to academic and industrial researchers. Its main focus is on new developments in genome bioinformatics and computational biology. Two distinct sections within the journal - Discovery Notes and Application Notes- focus on shorter papers; the former reporting biologically interesting discoveries using computational methods, the latter exploring the applications used for experiments.
期刊最新文献
MEHunter: Transformer-based mobile element variant detection from long reads Metabolic syndrome may be more frequent in treatment-naive sarcoidosis patients. Coracle—A Machine Learning Framework to Identify Bacteria Associated with Continuous Variables CoSIA: an R Bioconductor package for CrOss Species Investigation and Analysis LncLocFormer: a Transformer-based deep learning model for multi-label lncRNA subcellular localization prediction by using localization-specific attention mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1