Zachary Mondschein, Ambica Paliwal, Tesfaye Shiferaw Sida, Jordan Chamberlin, Runzi Wang, Meha Jain
{"title":"利用 Sentinel-2 图像绘制埃塞俄比亚小农系统的田间玉米产量图","authors":"Zachary Mondschein, Ambica Paliwal, Tesfaye Shiferaw Sida, Jordan Chamberlin, Runzi Wang, Meha Jain","doi":"10.3390/rs16183451","DOIUrl":null,"url":null,"abstract":"Remote sensing offers a low-cost method for estimating yields at large spatio-temporal scales. Here, we examined the ability of Sentinel-2 satellite imagery to map field-level maize yields across smallholder farms in two regions in Oromia district, Ethiopia. We evaluated how effectively different indices, the MTCI, GCVI, and NDVI, and different models, linear regression and random forest regression, can be used to map field-level yields. We also examined if models improved by adding weather and soil data and how generalizable our models were if trained in one region and applied to another region, where no data were used for model calibration. We found that random forest regression models that used monthly MTCI composites led to the highest yield prediction accuracies (R2 up to 0.63), particularly when using only localized data for training the model. These models were not very generalizable, especially when applied to regions that had significant haze remaining in the imagery. We also found that adding soil and weather data did little to improve model fit. Our results highlight the ability of Sentinel-2 imagery to map field-level yields in smallholder systems, though accuracies are limited in regions with high cloud cover and haze.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"17 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery\",\"authors\":\"Zachary Mondschein, Ambica Paliwal, Tesfaye Shiferaw Sida, Jordan Chamberlin, Runzi Wang, Meha Jain\",\"doi\":\"10.3390/rs16183451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing offers a low-cost method for estimating yields at large spatio-temporal scales. Here, we examined the ability of Sentinel-2 satellite imagery to map field-level maize yields across smallholder farms in two regions in Oromia district, Ethiopia. We evaluated how effectively different indices, the MTCI, GCVI, and NDVI, and different models, linear regression and random forest regression, can be used to map field-level yields. We also examined if models improved by adding weather and soil data and how generalizable our models were if trained in one region and applied to another region, where no data were used for model calibration. We found that random forest regression models that used monthly MTCI composites led to the highest yield prediction accuracies (R2 up to 0.63), particularly when using only localized data for training the model. These models were not very generalizable, especially when applied to regions that had significant haze remaining in the imagery. We also found that adding soil and weather data did little to improve model fit. Our results highlight the ability of Sentinel-2 imagery to map field-level yields in smallholder systems, though accuracies are limited in regions with high cloud cover and haze.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183451\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183451","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery
Remote sensing offers a low-cost method for estimating yields at large spatio-temporal scales. Here, we examined the ability of Sentinel-2 satellite imagery to map field-level maize yields across smallholder farms in two regions in Oromia district, Ethiopia. We evaluated how effectively different indices, the MTCI, GCVI, and NDVI, and different models, linear regression and random forest regression, can be used to map field-level yields. We also examined if models improved by adding weather and soil data and how generalizable our models were if trained in one region and applied to another region, where no data were used for model calibration. We found that random forest regression models that used monthly MTCI composites led to the highest yield prediction accuracies (R2 up to 0.63), particularly when using only localized data for training the model. These models were not very generalizable, especially when applied to regions that had significant haze remaining in the imagery. We also found that adding soil and weather data did little to improve model fit. Our results highlight the ability of Sentinel-2 imagery to map field-level yields in smallholder systems, though accuracies are limited in regions with high cloud cover and haze.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.