Jônathas S. T. de Souza, Gustavo S. Vicente, Leila L. Graef
{"title":"可迁移暗能量衰变为暗物质的制约因素","authors":"Jônathas S. T. de Souza, Gustavo S. Vicente, Leila L. Graef","doi":"10.3390/universe10090371","DOIUrl":null,"url":null,"abstract":"We revisit the proposal that an energy transfer from dark energy into dark matter can be described in field theory by a first order phase transition. We analyze a metastable dark energy model proposed in the literature, using updated constraints on the decay time of a metastable dark energy from recent data. The results of our analysis show no prospects for potentially observable signals that could distinguish this scenario from the ΛCDM. We analyze, for the first time, the process of bubble nucleation in this model, showing that such model would not drive a complete transition to a dark matter dominated phase even in a distant future. Nevertheless, the model is not excluded by the latest data and we confirm that the mass of the dark matter particle that would result from such a process corresponds to the mass of an axion-like particle, which is currently one of the best motivated dark matter candidates. We argue that extensions to this model, possibly with additional couplings, still deserve further attention as it could provide an interesting and viable description for an interacting dark sector scenario based in a single scalar field.","PeriodicalId":48646,"journal":{"name":"Universe","volume":"65 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraints on Metastable Dark Energy Decaying into Dark Matter\",\"authors\":\"Jônathas S. T. de Souza, Gustavo S. Vicente, Leila L. Graef\",\"doi\":\"10.3390/universe10090371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit the proposal that an energy transfer from dark energy into dark matter can be described in field theory by a first order phase transition. We analyze a metastable dark energy model proposed in the literature, using updated constraints on the decay time of a metastable dark energy from recent data. The results of our analysis show no prospects for potentially observable signals that could distinguish this scenario from the ΛCDM. We analyze, for the first time, the process of bubble nucleation in this model, showing that such model would not drive a complete transition to a dark matter dominated phase even in a distant future. Nevertheless, the model is not excluded by the latest data and we confirm that the mass of the dark matter particle that would result from such a process corresponds to the mass of an axion-like particle, which is currently one of the best motivated dark matter candidates. We argue that extensions to this model, possibly with additional couplings, still deserve further attention as it could provide an interesting and viable description for an interacting dark sector scenario based in a single scalar field.\",\"PeriodicalId\":48646,\"journal\":{\"name\":\"Universe\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/universe10090371\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universe","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/universe10090371","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Constraints on Metastable Dark Energy Decaying into Dark Matter
We revisit the proposal that an energy transfer from dark energy into dark matter can be described in field theory by a first order phase transition. We analyze a metastable dark energy model proposed in the literature, using updated constraints on the decay time of a metastable dark energy from recent data. The results of our analysis show no prospects for potentially observable signals that could distinguish this scenario from the ΛCDM. We analyze, for the first time, the process of bubble nucleation in this model, showing that such model would not drive a complete transition to a dark matter dominated phase even in a distant future. Nevertheless, the model is not excluded by the latest data and we confirm that the mass of the dark matter particle that would result from such a process corresponds to the mass of an axion-like particle, which is currently one of the best motivated dark matter candidates. We argue that extensions to this model, possibly with additional couplings, still deserve further attention as it could provide an interesting and viable description for an interacting dark sector scenario based in a single scalar field.
UniversePhysics and Astronomy-General Physics and Astronomy
CiteScore
4.30
自引率
17.20%
发文量
562
审稿时长
24.38 days
期刊介绍:
Universe (ISSN 2218-1997) is an international peer-reviewed open access journal focused on fundamental principles in physics. It publishes reviews, research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their research results in as much detail as possible. There is no restriction on the length of the papers.