Zhanghanshu Han, Yuying Wang, Jialu Xu, Yi Shang, Zhanqing Li, Chunsong Lu, Puning Zhan, Xiaorui Song, Min Lv, Yinshan Yang
{"title":"多种行星边界层高度检索方法及其对南京全年 PM2.5 及其化学成分的影响评估","authors":"Zhanghanshu Han, Yuying Wang, Jialu Xu, Yi Shang, Zhanqing Li, Chunsong Lu, Puning Zhan, Xiaorui Song, Min Lv, Yinshan Yang","doi":"10.3390/rs16183464","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the planetary boundary layer height (PBLH) using micro-pulse lidar (MPL) and microwave radiometer (MWR) methods, examining its relationship with the mass concentration of particles less than 2.5 µm in aerodynamic diameter (PM2.5) and its chemical compositions. Long-term PBLH retrieval results are presented derived from the MPL and the MWR, including its seasonal and diurnal variations, showing a superior performance regarding the MPL in terms of reliability and consistency with PM2.5. Also examined are the relationships between the two types of PBLHs and PM2.5. Unlike the PBLH derived from the MPL, the PBLH derived from the MWR does not have a negative correlation under severe pollution conditions. Furthermore, this study explores the effects of the PBLH on different aerosol chemical compositions, with the most pronounced impact observed on primary aerosols and relatively minimal influence on secondary aerosols, especially secondary organics during spring. This study underscores disparities in PBLH retrievals by different instruments during long-term observations and unveils distinct relationships between the PBLH and aerosol chemical compositions. Moreover, it highlights the greater influence of the PBLH on primary pollutants, laying the groundwork for future research in this field.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"198 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Multiple Planetary Boundary Layer Height Retrieval Methods and Their Impact on PM2.5 and Its Chemical Compositions throughout a Year in Nanjing\",\"authors\":\"Zhanghanshu Han, Yuying Wang, Jialu Xu, Yi Shang, Zhanqing Li, Chunsong Lu, Puning Zhan, Xiaorui Song, Min Lv, Yinshan Yang\",\"doi\":\"10.3390/rs16183464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the planetary boundary layer height (PBLH) using micro-pulse lidar (MPL) and microwave radiometer (MWR) methods, examining its relationship with the mass concentration of particles less than 2.5 µm in aerodynamic diameter (PM2.5) and its chemical compositions. Long-term PBLH retrieval results are presented derived from the MPL and the MWR, including its seasonal and diurnal variations, showing a superior performance regarding the MPL in terms of reliability and consistency with PM2.5. Also examined are the relationships between the two types of PBLHs and PM2.5. Unlike the PBLH derived from the MPL, the PBLH derived from the MWR does not have a negative correlation under severe pollution conditions. Furthermore, this study explores the effects of the PBLH on different aerosol chemical compositions, with the most pronounced impact observed on primary aerosols and relatively minimal influence on secondary aerosols, especially secondary organics during spring. This study underscores disparities in PBLH retrievals by different instruments during long-term observations and unveils distinct relationships between the PBLH and aerosol chemical compositions. Moreover, it highlights the greater influence of the PBLH on primary pollutants, laying the groundwork for future research in this field.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"198 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183464\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183464","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of Multiple Planetary Boundary Layer Height Retrieval Methods and Their Impact on PM2.5 and Its Chemical Compositions throughout a Year in Nanjing
In this study, we investigate the planetary boundary layer height (PBLH) using micro-pulse lidar (MPL) and microwave radiometer (MWR) methods, examining its relationship with the mass concentration of particles less than 2.5 µm in aerodynamic diameter (PM2.5) and its chemical compositions. Long-term PBLH retrieval results are presented derived from the MPL and the MWR, including its seasonal and diurnal variations, showing a superior performance regarding the MPL in terms of reliability and consistency with PM2.5. Also examined are the relationships between the two types of PBLHs and PM2.5. Unlike the PBLH derived from the MPL, the PBLH derived from the MWR does not have a negative correlation under severe pollution conditions. Furthermore, this study explores the effects of the PBLH on different aerosol chemical compositions, with the most pronounced impact observed on primary aerosols and relatively minimal influence on secondary aerosols, especially secondary organics during spring. This study underscores disparities in PBLH retrievals by different instruments during long-term observations and unveils distinct relationships between the PBLH and aerosol chemical compositions. Moreover, it highlights the greater influence of the PBLH on primary pollutants, laying the groundwork for future research in this field.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.