{"title":"利用奇异值分解算法改进从卫星观测数据中获取远红外波段叶绿素荧光的方法","authors":"Kewei Zhu, Mingmin Zou, Shuli Sheng, Xuwen Wang, Tianqi Liu, Yongping Cheng, Hui Wang","doi":"10.3390/rs16183441","DOIUrl":null,"url":null,"abstract":"Solar-induced chlorophyll fluorescence (SIF) is highly correlated with photosynthesis and can be used for estimating gross primary productivity (GPP) and monitoring vegetation stress. The far-red band of the solar Fraunhofer lines (FLs) is close to the strongest SIF emission peak and is unaffected by chlorophyll absorption, making it suitable for SIF intensity retrieval. In this study, we propose a retrieval window for far-red SIF, significantly enhancing the sensitivity of data-driven methods to SIF signals near 757 nm. This window introduces a weak O2 absorption band based on the FLs window, allowing for better separation of SIF signals from satellite spectra by altering the shape of specific singular vectors. Additionally, a frequency shift correction algorithm based on standard non-shifted reference spectra is proposed to discuss and eliminate the influence of the Doppler effect. SIF intensity retrieval was achieved using data from the GOSAT satellite, and the retrieved SIF was validated using GPP, enhanced vegetation index (EVI) from the MODIS platform, and published GOSAT SIF products. The validation results indicate that the SIF products provided in this study exhibit higher fitting goodness with GPP and EVI at high spatiotemporal resolutions, with improvements ranging from 55% to 129%. At low spatiotemporal resolutions, the SIF product provided in this study shows higher consistency with EVI and GPP spatially.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"20 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Methods for Retrieval of Chlorophyll Fluorescence from Satellite Observation in the Far-Red Band Using Singular Value Decomposition Algorithm\",\"authors\":\"Kewei Zhu, Mingmin Zou, Shuli Sheng, Xuwen Wang, Tianqi Liu, Yongping Cheng, Hui Wang\",\"doi\":\"10.3390/rs16183441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar-induced chlorophyll fluorescence (SIF) is highly correlated with photosynthesis and can be used for estimating gross primary productivity (GPP) and monitoring vegetation stress. The far-red band of the solar Fraunhofer lines (FLs) is close to the strongest SIF emission peak and is unaffected by chlorophyll absorption, making it suitable for SIF intensity retrieval. In this study, we propose a retrieval window for far-red SIF, significantly enhancing the sensitivity of data-driven methods to SIF signals near 757 nm. This window introduces a weak O2 absorption band based on the FLs window, allowing for better separation of SIF signals from satellite spectra by altering the shape of specific singular vectors. Additionally, a frequency shift correction algorithm based on standard non-shifted reference spectra is proposed to discuss and eliminate the influence of the Doppler effect. SIF intensity retrieval was achieved using data from the GOSAT satellite, and the retrieved SIF was validated using GPP, enhanced vegetation index (EVI) from the MODIS platform, and published GOSAT SIF products. The validation results indicate that the SIF products provided in this study exhibit higher fitting goodness with GPP and EVI at high spatiotemporal resolutions, with improvements ranging from 55% to 129%. At low spatiotemporal resolutions, the SIF product provided in this study shows higher consistency with EVI and GPP spatially.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183441\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183441","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Improved Methods for Retrieval of Chlorophyll Fluorescence from Satellite Observation in the Far-Red Band Using Singular Value Decomposition Algorithm
Solar-induced chlorophyll fluorescence (SIF) is highly correlated with photosynthesis and can be used for estimating gross primary productivity (GPP) and monitoring vegetation stress. The far-red band of the solar Fraunhofer lines (FLs) is close to the strongest SIF emission peak and is unaffected by chlorophyll absorption, making it suitable for SIF intensity retrieval. In this study, we propose a retrieval window for far-red SIF, significantly enhancing the sensitivity of data-driven methods to SIF signals near 757 nm. This window introduces a weak O2 absorption band based on the FLs window, allowing for better separation of SIF signals from satellite spectra by altering the shape of specific singular vectors. Additionally, a frequency shift correction algorithm based on standard non-shifted reference spectra is proposed to discuss and eliminate the influence of the Doppler effect. SIF intensity retrieval was achieved using data from the GOSAT satellite, and the retrieved SIF was validated using GPP, enhanced vegetation index (EVI) from the MODIS platform, and published GOSAT SIF products. The validation results indicate that the SIF products provided in this study exhibit higher fitting goodness with GPP and EVI at high spatiotemporal resolutions, with improvements ranging from 55% to 129%. At low spatiotemporal resolutions, the SIF product provided in this study shows higher consistency with EVI and GPP spatially.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.