Steven R. Price, J. Patrick Donohoe, Stanton R. Price, Josh Fairley, Stephanie Robert
{"title":"Adobe 的复脆性随频率和含水量的变化","authors":"Steven R. Price, J. Patrick Donohoe, Stanton R. Price, Josh Fairley, Stephanie Robert","doi":"10.3390/rs16183445","DOIUrl":null,"url":null,"abstract":"The complex permittivity of adobe is measured using a coaxial probe system verses frequency (500 MHz to 7 GHz) and water content (0% to 6%). Measurements are performed using adobe samples collected from abode bricks. The geotechnical properties of the compressed earth bricks are characterized by (1) percentage of gravel, sands, and fines; (2) Atterberg limits; and (3) grain-size distribution. The variation in adobe complex permittivity verses frequency is measured at discrete levels of water content using small adobe samples exposed to controlled levels of constant humidity in an environmental chamber. The typical water content profile verses depth for an adobe brick is also determined.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"15 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex Permittivity of Adobe Verses Frequency and Water Content\",\"authors\":\"Steven R. Price, J. Patrick Donohoe, Stanton R. Price, Josh Fairley, Stephanie Robert\",\"doi\":\"10.3390/rs16183445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex permittivity of adobe is measured using a coaxial probe system verses frequency (500 MHz to 7 GHz) and water content (0% to 6%). Measurements are performed using adobe samples collected from abode bricks. The geotechnical properties of the compressed earth bricks are characterized by (1) percentage of gravel, sands, and fines; (2) Atterberg limits; and (3) grain-size distribution. The variation in adobe complex permittivity verses frequency is measured at discrete levels of water content using small adobe samples exposed to controlled levels of constant humidity in an environmental chamber. The typical water content profile verses depth for an adobe brick is also determined.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183445\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183445","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Complex Permittivity of Adobe Verses Frequency and Water Content
The complex permittivity of adobe is measured using a coaxial probe system verses frequency (500 MHz to 7 GHz) and water content (0% to 6%). Measurements are performed using adobe samples collected from abode bricks. The geotechnical properties of the compressed earth bricks are characterized by (1) percentage of gravel, sands, and fines; (2) Atterberg limits; and (3) grain-size distribution. The variation in adobe complex permittivity verses frequency is measured at discrete levels of water content using small adobe samples exposed to controlled levels of constant humidity in an environmental chamber. The typical water content profile verses depth for an adobe brick is also determined.
期刊介绍:
Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.