统一无人机图像中的建筑实例提取与识别

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Pub Date : 2024-09-17 DOI:10.3390/rs16183449
Xiaofei Hu, Yang Zhou, Chaozhen Lan, Wenjian Gan, Qunshan Shi, Hanqiang Zhou
{"title":"统一无人机图像中的建筑实例提取与识别","authors":"Xiaofei Hu, Yang Zhou, Chaozhen Lan, Wenjian Gan, Qunshan Shi, Hanqiang Zhou","doi":"10.3390/rs16183449","DOIUrl":null,"url":null,"abstract":"Building instance extraction and recognition (BEAR) extracts and further recognizes building instances in unmanned aerial vehicle (UAV) images, holds with paramount importance in urban understanding applications. To address this challenge, we propose a unified network, BEAR-Former. Given the difficulty of building instance recognition due to the small area and multiple instances in UAV images, we developed a novel multi-view learning method, Cross-Mixer. This method constructs a cross-regional branch and an intra-regional branch to, respectively, extract the global context dependencies and local spatial structural details of buildings. In the cross-regional branch, we cleverly employed cross-attention and polar coordinate relative position encoding to learn more discriminative features. To solve the BEAR problem end to end, we designed a channel group and fusion module (CGFM) as a shared encoder. The CGFM includes a channel group encoder layer to independently extract features and a channel fusion module to dig out the complementary information for multiple tasks. Additionally, an RoI enhancement strategy was designed to improve model performance. Finally, we introduced a new metric, Recall@(K, iou), to evaluate the performance of the BEAR task. Experimental results demonstrate the effectiveness of our method.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":"76 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unifying Building Instance Extraction and Recognition in UAV Images\",\"authors\":\"Xiaofei Hu, Yang Zhou, Chaozhen Lan, Wenjian Gan, Qunshan Shi, Hanqiang Zhou\",\"doi\":\"10.3390/rs16183449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building instance extraction and recognition (BEAR) extracts and further recognizes building instances in unmanned aerial vehicle (UAV) images, holds with paramount importance in urban understanding applications. To address this challenge, we propose a unified network, BEAR-Former. Given the difficulty of building instance recognition due to the small area and multiple instances in UAV images, we developed a novel multi-view learning method, Cross-Mixer. This method constructs a cross-regional branch and an intra-regional branch to, respectively, extract the global context dependencies and local spatial structural details of buildings. In the cross-regional branch, we cleverly employed cross-attention and polar coordinate relative position encoding to learn more discriminative features. To solve the BEAR problem end to end, we designed a channel group and fusion module (CGFM) as a shared encoder. The CGFM includes a channel group encoder layer to independently extract features and a channel fusion module to dig out the complementary information for multiple tasks. Additionally, an RoI enhancement strategy was designed to improve model performance. Finally, we introduced a new metric, Recall@(K, iou), to evaluate the performance of the BEAR task. Experimental results demonstrate the effectiveness of our method.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16183449\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16183449","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

建筑实例提取与识别(BEAR)可提取并进一步识别无人机(UAV)图像中的建筑实例,在城市理解应用中具有极其重要的意义。为了应对这一挑战,我们提出了一个统一的网络 BEAR-Former。考虑到无人机图像中的小面积和多实例给建筑实例识别带来的困难,我们开发了一种新颖的多视图学习方法--Cross-Mixer。该方法构建了一个跨区域分支和一个区域内分支,分别提取建筑物的全局上下文相关性和局部空间结构细节。在跨区域分支中,我们巧妙地采用了交叉注意力和极坐标相对位置编码来学习更多的判别特征。为了端到端地解决 BEAR 问题,我们设计了一个通道组和融合模块(CGFM)作为共享编码器。CGFM 包括一个用于独立提取特征的通道组编码器层和一个用于为多个任务挖掘互补信息的通道融合模块。此外,我们还设计了一种 RoI 增强策略,以提高模型性能。最后,我们引入了一个新指标 Recall@(K, iou) 来评估 BEAR 任务的性能。实验结果证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unifying Building Instance Extraction and Recognition in UAV Images
Building instance extraction and recognition (BEAR) extracts and further recognizes building instances in unmanned aerial vehicle (UAV) images, holds with paramount importance in urban understanding applications. To address this challenge, we propose a unified network, BEAR-Former. Given the difficulty of building instance recognition due to the small area and multiple instances in UAV images, we developed a novel multi-view learning method, Cross-Mixer. This method constructs a cross-regional branch and an intra-regional branch to, respectively, extract the global context dependencies and local spatial structural details of buildings. In the cross-regional branch, we cleverly employed cross-attention and polar coordinate relative position encoding to learn more discriminative features. To solve the BEAR problem end to end, we designed a channel group and fusion module (CGFM) as a shared encoder. The CGFM includes a channel group encoder layer to independently extract features and a channel fusion module to dig out the complementary information for multiple tasks. Additionally, an RoI enhancement strategy was designed to improve model performance. Finally, we introduced a new metric, Recall@(K, iou), to evaluate the performance of the BEAR task. Experimental results demonstrate the effectiveness of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery Development of a Background Filtering Algorithm to Improve the Accuracy of Determining Underground Cavities Using Multi-Channel Ground-Penetrating Radar and Deep Learning Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1