通过稳健整数线性规划实现精确流量分解

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-09-13 DOI:10.1109/TCBB.2024.3433523
Fernando H. C. Dias;Alexandru I. Tomescu
{"title":"通过稳健整数线性规划实现精确流量分解","authors":"Fernando H. C. Dias;Alexandru I. Tomescu","doi":"10.1109/TCBB.2024.3433523","DOIUrl":null,"url":null,"abstract":"Minimum flow decomposition (MFD) is a common problem across various fields of Computer Science, where a flow is decomposed into a minimum set of weighted paths. However, in Bioinformatics applications, such as RNA transcript or quasi-species assembly, the flow is erroneous since it is obtained from noisy read coverages. Typical generalizations of the MFD problem to handle errors are based on least-squares formulations or modelling the erroneous flow values as ranges. All of these are thus focused on error handling at the level of individual edges. In this paper, we interpret the flow decomposition problem as a robust optimization problem and lift error-handling from individual edges to \n<italic>solution paths</i>\n. As such, we introduce a new \n<italic>minimum path-error flow decomposition</i>\n problem, for which we give an Integer Linear Programming formulation. Our experimental results reveal that our formulation can account for errors significantly better, by lowering the inaccuracy rate by 30–50% compared to previous error-handling formulations, with computational requirements that remain practical.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"1955-1964"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate Flow Decomposition via Robust Integer Linear Programming\",\"authors\":\"Fernando H. C. Dias;Alexandru I. Tomescu\",\"doi\":\"10.1109/TCBB.2024.3433523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minimum flow decomposition (MFD) is a common problem across various fields of Computer Science, where a flow is decomposed into a minimum set of weighted paths. However, in Bioinformatics applications, such as RNA transcript or quasi-species assembly, the flow is erroneous since it is obtained from noisy read coverages. Typical generalizations of the MFD problem to handle errors are based on least-squares formulations or modelling the erroneous flow values as ranges. All of these are thus focused on error handling at the level of individual edges. In this paper, we interpret the flow decomposition problem as a robust optimization problem and lift error-handling from individual edges to \\n<italic>solution paths</i>\\n. As such, we introduce a new \\n<italic>minimum path-error flow decomposition</i>\\n problem, for which we give an Integer Linear Programming formulation. Our experimental results reveal that our formulation can account for errors significantly better, by lowering the inaccuracy rate by 30–50% compared to previous error-handling formulations, with computational requirements that remain practical.\",\"PeriodicalId\":13344,\"journal\":{\"name\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"volume\":\"21 6\",\"pages\":\"1955-1964\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10680237/\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10680237/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate Flow Decomposition via Robust Integer Linear Programming
Minimum flow decomposition (MFD) is a common problem across various fields of Computer Science, where a flow is decomposed into a minimum set of weighted paths. However, in Bioinformatics applications, such as RNA transcript or quasi-species assembly, the flow is erroneous since it is obtained from noisy read coverages. Typical generalizations of the MFD problem to handle errors are based on least-squares formulations or modelling the erroneous flow values as ranges. All of these are thus focused on error handling at the level of individual edges. In this paper, we interpret the flow decomposition problem as a robust optimization problem and lift error-handling from individual edges to solution paths . As such, we introduce a new minimum path-error flow decomposition problem, for which we give an Integer Linear Programming formulation. Our experimental results reveal that our formulation can account for errors significantly better, by lowering the inaccuracy rate by 30–50% compared to previous error-handling formulations, with computational requirements that remain practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
Guest Editorial Guest Editorial for the 20th Asia Pacific Bioinformatics Conference iAnOxPep: a machine learning model for the identification of anti-oxidative peptides using ensemble learning. DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1