生物质抑制剂的合成与性能研究及其在放射性气溶胶沉降中的应用

IF 3.2 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Indoor and Built Environment Pub Date : 2024-09-14 DOI:10.1177/1420326x241279909
Dong Xie, Linwen Jiang, Yugui Zhang, Suzhe Li, Zengming Tang
{"title":"生物质抑制剂的合成与性能研究及其在放射性气溶胶沉降中的应用","authors":"Dong Xie, Linwen Jiang, Yugui Zhang, Suzhe Li, Zengming Tang","doi":"10.1177/1420326x241279909","DOIUrl":null,"url":null,"abstract":"The decommissioning of nuclear facilities and nuclear accidents may release a various amount of radioactive aerosols, which could pose a serious threat to the natural environment and human health. Therefore, there is a need to develop an eco-friendly aerosol suppressant to control the radioactive aerosol. In this paper, carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), rhamnolipid and sophorajaponica glycolipid were selected as the raw material, and the aerosol suppressant was prepared by solution polymerization. The sample was characterized by FTIR, TGA, viscosity, surface tension and contact angle analysis. The results indicated that the grafted reaction was successful. Rhamnolipid and sophorajaponica glycolipid effectively reduced the surface tension of the copolymer solution to 27.7 mN/m, and the contact angle between the polymer solution and experimental dust was decreased to 27.36°. The aerosol sedimentation experiment showed that the suppressant had a significant effect on aerosol. The sedimentation efficiency of concrete aerosols was 87.7%, and the sedimentation efficiency of radioactive aerosols reached 90.8%. It provided an eco-friendly and effective method to quickly and easily control and remove high-concentration radioactive aerosol.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and performance study of biomass-based suppressant and its application in radioactive aerosol sedimentation\",\"authors\":\"Dong Xie, Linwen Jiang, Yugui Zhang, Suzhe Li, Zengming Tang\",\"doi\":\"10.1177/1420326x241279909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decommissioning of nuclear facilities and nuclear accidents may release a various amount of radioactive aerosols, which could pose a serious threat to the natural environment and human health. Therefore, there is a need to develop an eco-friendly aerosol suppressant to control the radioactive aerosol. In this paper, carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), rhamnolipid and sophorajaponica glycolipid were selected as the raw material, and the aerosol suppressant was prepared by solution polymerization. The sample was characterized by FTIR, TGA, viscosity, surface tension and contact angle analysis. The results indicated that the grafted reaction was successful. Rhamnolipid and sophorajaponica glycolipid effectively reduced the surface tension of the copolymer solution to 27.7 mN/m, and the contact angle between the polymer solution and experimental dust was decreased to 27.36°. The aerosol sedimentation experiment showed that the suppressant had a significant effect on aerosol. The sedimentation efficiency of concrete aerosols was 87.7%, and the sedimentation efficiency of radioactive aerosols reached 90.8%. It provided an eco-friendly and effective method to quickly and easily control and remove high-concentration radioactive aerosol.\",\"PeriodicalId\":13578,\"journal\":{\"name\":\"Indoor and Built Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indoor and Built Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1420326x241279909\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x241279909","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

核设施退役和核事故可能会释放出不同数量的放射性气溶胶,对自然环境和人类健康构成严重威胁。因此,有必要开发一种环保型气溶胶抑制剂来控制放射性气溶胶。本文以羧甲基纤维素(CMC)、聚乙烯醇(PVA)、鼠李糖脂和槐树糖脂为原料,采用溶液聚合法制备了气溶胶抑制剂。通过傅立叶变换红外光谱、热重分析、粘度、表面张力和接触角分析对样品进行了表征。结果表明接枝反应是成功的。鼠李糖脂和槐树糖脂有效地将共聚物溶液的表面张力降低到 27.7 mN/m,聚合物溶液与实验粉尘的接触角降低到 27.36°。气溶胶沉降实验表明,抑制剂对气溶胶有显著影响。混凝土气溶胶的沉降效率为 87.7%,放射性气溶胶的沉降效率达到 90.8%。这为快速、简便地控制和清除高浓度放射性气溶胶提供了一种环保、有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and performance study of biomass-based suppressant and its application in radioactive aerosol sedimentation
The decommissioning of nuclear facilities and nuclear accidents may release a various amount of radioactive aerosols, which could pose a serious threat to the natural environment and human health. Therefore, there is a need to develop an eco-friendly aerosol suppressant to control the radioactive aerosol. In this paper, carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), rhamnolipid and sophorajaponica glycolipid were selected as the raw material, and the aerosol suppressant was prepared by solution polymerization. The sample was characterized by FTIR, TGA, viscosity, surface tension and contact angle analysis. The results indicated that the grafted reaction was successful. Rhamnolipid and sophorajaponica glycolipid effectively reduced the surface tension of the copolymer solution to 27.7 mN/m, and the contact angle between the polymer solution and experimental dust was decreased to 27.36°. The aerosol sedimentation experiment showed that the suppressant had a significant effect on aerosol. The sedimentation efficiency of concrete aerosols was 87.7%, and the sedimentation efficiency of radioactive aerosols reached 90.8%. It provided an eco-friendly and effective method to quickly and easily control and remove high-concentration radioactive aerosol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indoor and Built Environment
Indoor and Built Environment 环境科学-工程:环境
CiteScore
6.40
自引率
25.00%
发文量
130
审稿时长
2.6 months
期刊介绍: Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Dynamics of indoor volatile organic compounds and seasonal ventilation strategies for residential buildings in Northeast China The indoor thermal environment performance of various air-conditioning system configurations and airflow modes in a large space museum building Leakage identification and correlation coefficient method for industrial workshop production process combining with computational fluid dynamics Synthesis and performance study of biomass-based suppressant and its application in radioactive aerosol sedimentation Modelling of radiation and flow fields in in-duct ultraviolet germicidal irradiation systems with and without ribs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1