利用深度学习技术准确识别盐穹:变压器、生成式人工智能和液态机器

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geophysical Prospecting Pub Date : 2024-09-17 DOI:10.1111/1365-2478.13603
Kamal Souadih, Anis Mohammedi, Sofia Chergui
{"title":"利用深度学习技术准确识别盐穹:变压器、生成式人工智能和液态机器","authors":"Kamal Souadih,&nbsp;Anis Mohammedi,&nbsp;Sofia Chergui","doi":"10.1111/1365-2478.13603","DOIUrl":null,"url":null,"abstract":"<p>Across various global regions abundant in oil and natural gas reserves, the presence of substantial sub-surface salt deposits holds significant relevance. Accurate identification of salt domes becomes crucial for enterprises engaged in oil and gas exploration. Our research introduces a precise method for the automatic detection of salt domes, leveraging advanced deep learning architectures such as U-net, transformers, artificial intelligence generative models and liquid state machines. In comparison with state-of-the-art techniques, our model demonstrates superior performance, achieving a stable and validated <span></span><math>\n <semantics>\n <mrow>\n <mn>96</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$96\\%$</annotation>\n </semantics></math> intersection over the union metric, indicating high accuracy and robustness. Furthermore, the Dice similarity coefficient attaining <span></span><math>\n <semantics>\n <mrow>\n <mn>90</mn>\n <mo>%</mo>\n </mrow>\n <annotation>$90\\%$</annotation>\n </semantics></math> underscores the model's proficiency in closely aligning with ground truth across diverse scenarios. This evaluation, conducted on 1000 seismic images, reveals that our proposed architecture is not only comparable but often surpasses existing segmentation models in effectiveness and reliability.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate identification of salt domes using deep learning techniques: Transformers, generative artificial intelligence and liquid state machines\",\"authors\":\"Kamal Souadih,&nbsp;Anis Mohammedi,&nbsp;Sofia Chergui\",\"doi\":\"10.1111/1365-2478.13603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Across various global regions abundant in oil and natural gas reserves, the presence of substantial sub-surface salt deposits holds significant relevance. Accurate identification of salt domes becomes crucial for enterprises engaged in oil and gas exploration. Our research introduces a precise method for the automatic detection of salt domes, leveraging advanced deep learning architectures such as U-net, transformers, artificial intelligence generative models and liquid state machines. In comparison with state-of-the-art techniques, our model demonstrates superior performance, achieving a stable and validated <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>96</mn>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$96\\\\%$</annotation>\\n </semantics></math> intersection over the union metric, indicating high accuracy and robustness. Furthermore, the Dice similarity coefficient attaining <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>90</mn>\\n <mo>%</mo>\\n </mrow>\\n <annotation>$90\\\\%$</annotation>\\n </semantics></math> underscores the model's proficiency in closely aligning with ground truth across diverse scenarios. This evaluation, conducted on 1000 seismic images, reveals that our proposed architecture is not only comparable but often surpasses existing segmentation models in effectiveness and reliability.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13603\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13603","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在全球各个石油和天然气储量丰富的地区,大量地下盐沉积的存在具有重要意义。准确识别盐穹对于从事石油和天然气勘探的企业来说至关重要。我们的研究利用 U-网络、变压器、人工智能生成模型和液态机等先进的深度学习架构,介绍了一种自动检测盐穹的精确方法。与最先进的技术相比,我们的模型表现出卓越的性能,在union度量上实现了稳定且有效的交集,显示出高精度和鲁棒性。此外,Dice 相似性系数的获得强调了该模型在各种情况下与地面实况密切吻合的能力。在对 1000 幅地震图像进行评估后发现,我们提出的架构不仅在有效性和可靠性方面与现有的分割模型不相上下,而且经常超越它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate identification of salt domes using deep learning techniques: Transformers, generative artificial intelligence and liquid state machines

Across various global regions abundant in oil and natural gas reserves, the presence of substantial sub-surface salt deposits holds significant relevance. Accurate identification of salt domes becomes crucial for enterprises engaged in oil and gas exploration. Our research introduces a precise method for the automatic detection of salt domes, leveraging advanced deep learning architectures such as U-net, transformers, artificial intelligence generative models and liquid state machines. In comparison with state-of-the-art techniques, our model demonstrates superior performance, achieving a stable and validated 96 % $96\%$ intersection over the union metric, indicating high accuracy and robustness. Furthermore, the Dice similarity coefficient attaining 90 % $90\%$ underscores the model's proficiency in closely aligning with ground truth across diverse scenarios. This evaluation, conducted on 1000 seismic images, reveals that our proposed architecture is not only comparable but often surpasses existing segmentation models in effectiveness and reliability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
期刊最新文献
Issue Information Simultaneous inversion of four physical parameters of hydrate reservoir for high accuracy porosity estimation A mollifier approach to seismic data representation Analytic solutions for effective elastic moduli of isotropic solids containing oblate spheroid pores with critical porosity An efficient pseudoelastic pure P-mode wave equation and the implementation of the free surface boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1