{"title":"SFNet:用于恒星光谱识别的带 CWT 的恒星特征网络","authors":"Hao Fu, Peng Liu, Xuan Qi and Xue Mei","doi":"10.1088/1674-4527/ad7364","DOIUrl":null,"url":null,"abstract":"Stellar spectral classification is crucial in astronomical data analysis. However, existing studies are often limited by the uneven distribution of stellar samples, posing challenges in practical applications. Even when balancing stellar categories and their numbers, there is room for improvement in classification accuracy. This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images. A novel neural network, the Stellar Feature Network, is proposed for classifying these images. Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9, encompassing five equal categories (B, A, F, G, K), were used. Comparative experiments validate the effectiveness of the proposed methods and network, achieving significant improvements in classification accuracy.","PeriodicalId":54494,"journal":{"name":"Research in Astronomy and Astrophysics","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SFNet: Stellar Feature Network with CWT for Stellar Spectra Recognition\",\"authors\":\"Hao Fu, Peng Liu, Xuan Qi and Xue Mei\",\"doi\":\"10.1088/1674-4527/ad7364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stellar spectral classification is crucial in astronomical data analysis. However, existing studies are often limited by the uneven distribution of stellar samples, posing challenges in practical applications. Even when balancing stellar categories and their numbers, there is room for improvement in classification accuracy. This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images. A novel neural network, the Stellar Feature Network, is proposed for classifying these images. Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9, encompassing five equal categories (B, A, F, G, K), were used. Comparative experiments validate the effectiveness of the proposed methods and network, achieving significant improvements in classification accuracy.\",\"PeriodicalId\":54494,\"journal\":{\"name\":\"Research in Astronomy and Astrophysics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Astronomy and Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-4527/ad7364\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Astronomy and Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-4527/ad7364","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
SFNet: Stellar Feature Network with CWT for Stellar Spectra Recognition
Stellar spectral classification is crucial in astronomical data analysis. However, existing studies are often limited by the uneven distribution of stellar samples, posing challenges in practical applications. Even when balancing stellar categories and their numbers, there is room for improvement in classification accuracy. This study introduces a Continuous Wavelet Transform using the Super Morlet wavelet to convert stellar spectra into wavelet images. A novel neural network, the Stellar Feature Network, is proposed for classifying these images. Stellar spectra from Large Sky Area Multi-Object Fiber Spectroscopic Telescope DR9, encompassing five equal categories (B, A, F, G, K), were used. Comparative experiments validate the effectiveness of the proposed methods and network, achieving significant improvements in classification accuracy.
期刊介绍:
Research in Astronomy and Astrophysics (RAA) is an international journal publishing original research papers and reviews across all branches of astronomy and astrophysics, with a particular interest in the following topics:
-large-scale structure of universe formation and evolution of galaxies-
high-energy and cataclysmic processes in astrophysics-
formation and evolution of stars-
astrogeodynamics-
solar magnetic activity and heliogeospace environments-
dynamics of celestial bodies in the solar system and artificial bodies-
space observation and exploration-
new astronomical techniques and methods