通过邻接法识别线性化水波方程的状态和参数

IF 7.3 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Science China Information Sciences Pub Date : 2024-09-13 DOI:10.1007/s11432-023-4094-4
Yang Yu, Cheng-Zhong Xu, Hai-Long Pei, Jinpeng Yu
{"title":"通过邻接法识别线性化水波方程的状态和参数","authors":"Yang Yu, Cheng-Zhong Xu, Hai-Long Pei, Jinpeng Yu","doi":"10.1007/s11432-023-4094-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on the state and parameter identification problem of a hydrodynamical system. This system is modeled as a linearized water wave equation (LWWE), a hyperbolic state-space model coupled with a Laplace equation. We assume that the wave elevation at two distinct points is the only measurement of water waves. We show that the state and water depth can be reconstructed from this point measurement records. The identification problem is recast as an optimization problem over an infinite-dimensional space. We propose the adjoint method-based identification algorithm to generate an estimated state and water depth. We then performed a numerical simulation to show the effectiveness of our designed algorithm by comparing it with existing studies.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"3 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State and parameter identification of linearized water wave equation via adjoint method\",\"authors\":\"Yang Yu, Cheng-Zhong Xu, Hai-Long Pei, Jinpeng Yu\",\"doi\":\"10.1007/s11432-023-4094-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we focus on the state and parameter identification problem of a hydrodynamical system. This system is modeled as a linearized water wave equation (LWWE), a hyperbolic state-space model coupled with a Laplace equation. We assume that the wave elevation at two distinct points is the only measurement of water waves. We show that the state and water depth can be reconstructed from this point measurement records. The identification problem is recast as an optimization problem over an infinite-dimensional space. We propose the adjoint method-based identification algorithm to generate an estimated state and water depth. We then performed a numerical simulation to show the effectiveness of our designed algorithm by comparing it with existing studies.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-4094-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4094-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文重点讨论水动力系统的状态和参数识别问题。该系统的模型是线性化水波方程(LWWE),这是一个与拉普拉斯方程耦合的双曲状态空间模型。我们假设两个不同点的波高是水波的唯一测量值。我们的研究表明,状态和水深可以从这个点的测量记录中重建。识别问题被重构为无限维空间上的优化问题。我们提出了基于邻接法的识别算法,以生成估计的状态和水深。然后,我们进行了数值模拟,通过与现有研究的比较,展示了我们设计的算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
State and parameter identification of linearized water wave equation via adjoint method

In this paper, we focus on the state and parameter identification problem of a hydrodynamical system. This system is modeled as a linearized water wave equation (LWWE), a hyperbolic state-space model coupled with a Laplace equation. We assume that the wave elevation at two distinct points is the only measurement of water waves. We show that the state and water depth can be reconstructed from this point measurement records. The identification problem is recast as an optimization problem over an infinite-dimensional space. We propose the adjoint method-based identification algorithm to generate an estimated state and water depth. We then performed a numerical simulation to show the effectiveness of our designed algorithm by comparing it with existing studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Information Sciences
Science China Information Sciences COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
12.60
自引率
5.70%
发文量
224
审稿时长
8.3 months
期刊介绍: Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.
期刊最新文献
Weighted sum power maximization for STAR-RIS-aided SWIPT systems with nonlinear energy harvesting TSCompiler: efficient compilation framework for dynamic-shape models NeurDB: an AI-powered autonomous data system State and parameter identification of linearized water wave equation via adjoint method An STP look at logical blocking of finite state machines: formulation, detection, and search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1