W. S. Porter, B. Liu, D. Ray, A. A. Valverde, M. Li, M. R. Mumpower, M. Brodeur, D. P. Burdette, N. Callahan, A. Cannon, J. A. Clark, D. E. M. Hoff, A. M. Houff, F. G. Kondev, A. E. Lovell, A. T. Mohan, G. E. Morgan, C. Quick, G. Savard, K. S. Sharma, T. M. Sprouse, L. Varriano
{"title":"研究 Ru 和 Pd 同位素的精确质量测量对机器学习质量建模的影响","authors":"W. S. Porter, B. Liu, D. Ray, A. A. Valverde, M. Li, M. R. Mumpower, M. Brodeur, D. P. Burdette, N. Callahan, A. Cannon, J. A. Clark, D. E. M. Hoff, A. M. Houff, F. G. Kondev, A. E. Lovell, A. T. Mohan, G. E. Morgan, C. Quick, G. Savard, K. S. Sharma, T. M. Sprouse, L. Varriano","doi":"arxiv-2409.12141","DOIUrl":null,"url":null,"abstract":"Atomic masses are a foundational quantity in our understanding of nuclear\nstructure, astrophysics and fundamental symmetries. The long-standing goal of\ncreating a predictive global model for the binding energy of a nucleus remains\na significant challenge, however, and prompts the need for precise measurements\nof atomic masses to serve as anchor points for model developments. We present\nprecise mass measurements of neutron-rich Ru and Pd isotopes performed at the\nCalifornium Rare Isotope Breeder Upgrade facility at Argonne National\nLaboratory using the Canadian Penning Trap mass spectrometer. The masses of\n$^{108}$Ru, $^{110}$Ru and $^{116}$Pd were measured to a relative mass\nprecision $\\delta m/m \\approx 10^{-8}$ via the phase-imaging\nion-cyclotron-resonance technique, and represent an improvement of\napproximately an order of magnitude over previous measurements. These mass data\nwere used in conjunction with the physically interpretable machine learning\n(PIML) model, which uses a mixture density neural network to model mass\nexcesses via a mixture of Gaussian distributions. The effects of our new mass\ndata on a Bayesian-updating of a PIML model are presented.","PeriodicalId":501206,"journal":{"name":"arXiv - PHYS - Nuclear Experiment","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the effects of precise mass measurements of Ru and Pd isotopes on machine learning mass modeling\",\"authors\":\"W. S. Porter, B. Liu, D. Ray, A. A. Valverde, M. Li, M. R. Mumpower, M. Brodeur, D. P. Burdette, N. Callahan, A. Cannon, J. A. Clark, D. E. M. Hoff, A. M. Houff, F. G. Kondev, A. E. Lovell, A. T. Mohan, G. E. Morgan, C. Quick, G. Savard, K. S. Sharma, T. M. Sprouse, L. Varriano\",\"doi\":\"arxiv-2409.12141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atomic masses are a foundational quantity in our understanding of nuclear\\nstructure, astrophysics and fundamental symmetries. The long-standing goal of\\ncreating a predictive global model for the binding energy of a nucleus remains\\na significant challenge, however, and prompts the need for precise measurements\\nof atomic masses to serve as anchor points for model developments. We present\\nprecise mass measurements of neutron-rich Ru and Pd isotopes performed at the\\nCalifornium Rare Isotope Breeder Upgrade facility at Argonne National\\nLaboratory using the Canadian Penning Trap mass spectrometer. The masses of\\n$^{108}$Ru, $^{110}$Ru and $^{116}$Pd were measured to a relative mass\\nprecision $\\\\delta m/m \\\\approx 10^{-8}$ via the phase-imaging\\nion-cyclotron-resonance technique, and represent an improvement of\\napproximately an order of magnitude over previous measurements. These mass data\\nwere used in conjunction with the physically interpretable machine learning\\n(PIML) model, which uses a mixture density neural network to model mass\\nexcesses via a mixture of Gaussian distributions. The effects of our new mass\\ndata on a Bayesian-updating of a PIML model are presented.\",\"PeriodicalId\":501206,\"journal\":{\"name\":\"arXiv - PHYS - Nuclear Experiment\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Nuclear Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the effects of precise mass measurements of Ru and Pd isotopes on machine learning mass modeling
Atomic masses are a foundational quantity in our understanding of nuclear
structure, astrophysics and fundamental symmetries. The long-standing goal of
creating a predictive global model for the binding energy of a nucleus remains
a significant challenge, however, and prompts the need for precise measurements
of atomic masses to serve as anchor points for model developments. We present
precise mass measurements of neutron-rich Ru and Pd isotopes performed at the
Californium Rare Isotope Breeder Upgrade facility at Argonne National
Laboratory using the Canadian Penning Trap mass spectrometer. The masses of
$^{108}$Ru, $^{110}$Ru and $^{116}$Pd were measured to a relative mass
precision $\delta m/m \approx 10^{-8}$ via the phase-imaging
ion-cyclotron-resonance technique, and represent an improvement of
approximately an order of magnitude over previous measurements. These mass data
were used in conjunction with the physically interpretable machine learning
(PIML) model, which uses a mixture density neural network to model mass
excesses via a mixture of Gaussian distributions. The effects of our new mass
data on a Bayesian-updating of a PIML model are presented.