Zhiyuan Hu, Sarah Mayes, Weixu Wang, Jose M. Santos-Pereira, Fabian Theis, Tatjana Sauka-Spengler
{"title":"单细胞多组学、空间转录组学和系统扰动解码神经嵴命运决定的回路","authors":"Zhiyuan Hu, Sarah Mayes, Weixu Wang, Jose M. Santos-Pereira, Fabian Theis, Tatjana Sauka-Spengler","doi":"10.1101/2024.09.17.613303","DOIUrl":null,"url":null,"abstract":"Cranial neural crest (NC) cells, which can migrate, adopt multiple fates, and form most of the craniofacial skeleton, are an excellent model for studying cell fate decisions. Using time-resolved single-cell multi-omics, spatial transcriptomics, and systematic Perturb-seq, we fully deciphered zebrafish cranial NC programs, including 23 cell states and three spatial trajectories, reconstructed and tested the complete gene regulatory network (GRN). Our GRN model, combined with a novel velocity-embedded simulation method, accurately predicted functions of all major regulons, with over a 3-fold increase in correlation between in vivo and in silico perturbations. Using our new approach based on regulatory synchronization, we discovered a post-epithelial-mesenchymal-transition endothelial-like program crucial for migration, identified motif coordinators for dual-fate priming, and quantified lineage-specific cooperative transcription factor functions. This study provides a comprehensive and validated NC regulatory landscape with unprecedented resolution, offering general regulatory models for cell fate decisions in vertebrates.","PeriodicalId":501269,"journal":{"name":"bioRxiv - Developmental Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell multi-omics, spatial transcriptomics and systematic perturbation decode circuitry of neural crest fate decisions\",\"authors\":\"Zhiyuan Hu, Sarah Mayes, Weixu Wang, Jose M. Santos-Pereira, Fabian Theis, Tatjana Sauka-Spengler\",\"doi\":\"10.1101/2024.09.17.613303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cranial neural crest (NC) cells, which can migrate, adopt multiple fates, and form most of the craniofacial skeleton, are an excellent model for studying cell fate decisions. Using time-resolved single-cell multi-omics, spatial transcriptomics, and systematic Perturb-seq, we fully deciphered zebrafish cranial NC programs, including 23 cell states and three spatial trajectories, reconstructed and tested the complete gene regulatory network (GRN). Our GRN model, combined with a novel velocity-embedded simulation method, accurately predicted functions of all major regulons, with over a 3-fold increase in correlation between in vivo and in silico perturbations. Using our new approach based on regulatory synchronization, we discovered a post-epithelial-mesenchymal-transition endothelial-like program crucial for migration, identified motif coordinators for dual-fate priming, and quantified lineage-specific cooperative transcription factor functions. This study provides a comprehensive and validated NC regulatory landscape with unprecedented resolution, offering general regulatory models for cell fate decisions in vertebrates.\",\"PeriodicalId\":501269,\"journal\":{\"name\":\"bioRxiv - Developmental Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Developmental Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.17.613303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Single-cell multi-omics, spatial transcriptomics and systematic perturbation decode circuitry of neural crest fate decisions
Cranial neural crest (NC) cells, which can migrate, adopt multiple fates, and form most of the craniofacial skeleton, are an excellent model for studying cell fate decisions. Using time-resolved single-cell multi-omics, spatial transcriptomics, and systematic Perturb-seq, we fully deciphered zebrafish cranial NC programs, including 23 cell states and three spatial trajectories, reconstructed and tested the complete gene regulatory network (GRN). Our GRN model, combined with a novel velocity-embedded simulation method, accurately predicted functions of all major regulons, with over a 3-fold increase in correlation between in vivo and in silico perturbations. Using our new approach based on regulatory synchronization, we discovered a post-epithelial-mesenchymal-transition endothelial-like program crucial for migration, identified motif coordinators for dual-fate priming, and quantified lineage-specific cooperative transcription factor functions. This study provides a comprehensive and validated NC regulatory landscape with unprecedented resolution, offering general regulatory models for cell fate decisions in vertebrates.