Lauren A Wich,Leah M Gudex,Tyler M Dann,Hannah J Matich,Alex J Thompson,Michael Atie,Matthew D Johnson,Robert H Bartlett,Alvaro Rojas-Peña,Ronald B Hirschl,Joseph A Potkay
{"title":"用于小儿终末期肺衰竭的减阻同心门控人工膜肺","authors":"Lauren A Wich,Leah M Gudex,Tyler M Dann,Hannah J Matich,Alex J Thompson,Michael Atie,Matthew D Johnson,Robert H Bartlett,Alvaro Rojas-Peña,Ronald B Hirschl,Joseph A Potkay","doi":"10.1097/mat.0000000000002308","DOIUrl":null,"url":null,"abstract":"The goal of the low-resistance pediatric artificial lung (PAL-LR) is to serve as a pumpless bridge-to-transplant device for children with end-stage lung failure. The PAL-LR doubles the exposed fiber length of the previous PAL design. In vitro and in vivo studies tested hemocompatibility, device flow, gas exchange and pressure drop performance. For in vitro tests, average rated blood flow (outlet SO2 of 95%) was 2.56 ± 0.93 L/min with a pressure drop of 25.88 ± 0.90 mm Hg. At the targeted pediatric flow rate of 1 L/min, the pressure drop was 8.6 mm Hg compared with 25 mm Hg of the PAL. At rated flow, the average O2 and CO2 transfer rates were 101.75 ± 10.81 and 77.93 ± 8.40 mL/min, respectively. The average maximum O2 and CO2 exchange efficiencies were 215.75 ± 22.93 and 176.99 ± 8.40 mL/(min m2), respectively. In vivo tests revealed an average outlet SO2 of 100%, and average pressure drop of 2 ± 0 mm Hg for a blood flow of 1.07 ± 0.02 L/min. Having a lower resistance, the PAL-LR is a promising step closer to a pumpless artificial membrane lung that alleviates right ventricular strain associated with idiopathic pulmonary hypertension.","PeriodicalId":8844,"journal":{"name":"ASAIO Journal","volume":"15 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Reduced Resistance, Concentric-Gated Artificial Membrane Lung for Pediatric End-Stage Lung Failure.\",\"authors\":\"Lauren A Wich,Leah M Gudex,Tyler M Dann,Hannah J Matich,Alex J Thompson,Michael Atie,Matthew D Johnson,Robert H Bartlett,Alvaro Rojas-Peña,Ronald B Hirschl,Joseph A Potkay\",\"doi\":\"10.1097/mat.0000000000002308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the low-resistance pediatric artificial lung (PAL-LR) is to serve as a pumpless bridge-to-transplant device for children with end-stage lung failure. The PAL-LR doubles the exposed fiber length of the previous PAL design. In vitro and in vivo studies tested hemocompatibility, device flow, gas exchange and pressure drop performance. For in vitro tests, average rated blood flow (outlet SO2 of 95%) was 2.56 ± 0.93 L/min with a pressure drop of 25.88 ± 0.90 mm Hg. At the targeted pediatric flow rate of 1 L/min, the pressure drop was 8.6 mm Hg compared with 25 mm Hg of the PAL. At rated flow, the average O2 and CO2 transfer rates were 101.75 ± 10.81 and 77.93 ± 8.40 mL/min, respectively. The average maximum O2 and CO2 exchange efficiencies were 215.75 ± 22.93 and 176.99 ± 8.40 mL/(min m2), respectively. In vivo tests revealed an average outlet SO2 of 100%, and average pressure drop of 2 ± 0 mm Hg for a blood flow of 1.07 ± 0.02 L/min. Having a lower resistance, the PAL-LR is a promising step closer to a pumpless artificial membrane lung that alleviates right ventricular strain associated with idiopathic pulmonary hypertension.\",\"PeriodicalId\":8844,\"journal\":{\"name\":\"ASAIO Journal\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASAIO Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1097/mat.0000000000002308\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASAIO Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1097/mat.0000000000002308","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Reduced Resistance, Concentric-Gated Artificial Membrane Lung for Pediatric End-Stage Lung Failure.
The goal of the low-resistance pediatric artificial lung (PAL-LR) is to serve as a pumpless bridge-to-transplant device for children with end-stage lung failure. The PAL-LR doubles the exposed fiber length of the previous PAL design. In vitro and in vivo studies tested hemocompatibility, device flow, gas exchange and pressure drop performance. For in vitro tests, average rated blood flow (outlet SO2 of 95%) was 2.56 ± 0.93 L/min with a pressure drop of 25.88 ± 0.90 mm Hg. At the targeted pediatric flow rate of 1 L/min, the pressure drop was 8.6 mm Hg compared with 25 mm Hg of the PAL. At rated flow, the average O2 and CO2 transfer rates were 101.75 ± 10.81 and 77.93 ± 8.40 mL/min, respectively. The average maximum O2 and CO2 exchange efficiencies were 215.75 ± 22.93 and 176.99 ± 8.40 mL/(min m2), respectively. In vivo tests revealed an average outlet SO2 of 100%, and average pressure drop of 2 ± 0 mm Hg for a blood flow of 1.07 ± 0.02 L/min. Having a lower resistance, the PAL-LR is a promising step closer to a pumpless artificial membrane lung that alleviates right ventricular strain associated with idiopathic pulmonary hypertension.
期刊介绍:
ASAIO Journal is in the forefront of artificial organ research and development. On the cutting edge of innovative technology, it features peer-reviewed articles of the highest quality that describe research, development, the most recent advances in the design of artificial organ devices and findings from initial testing. Bimonthly, the ASAIO Journal features state-of-the-art investigations, laboratory and clinical trials, and discussions and opinions from experts around the world.
The official publication of the American Society for Artificial Internal Organs.