高效三维贝叶斯全波形反演和先验假设分析

Xuebin Zhao, Andrew Curtis
{"title":"高效三维贝叶斯全波形反演和先验假设分析","authors":"Xuebin Zhao, Andrew Curtis","doi":"arxiv-2409.09746","DOIUrl":null,"url":null,"abstract":"Spatially 3-dimensional seismic full waveform inversion (3D FWI) is a highly\nnonlinear and computationally demanding inverse problem that constructs 3D\nsubsurface seismic velocity structures using seismic waveform data. To\ncharacterise non-uniqueness in the solutions we demonstrate Bayesian 3D FWI\nusing an efficient method called physically structured variational inference\napplied to 3D acoustic Bayesian FWI. The results provide reasonable posterior\nuncertainty estimates, at a computational cost that is only an order of\nmagnitude greater than that of standard, deterministic FWI. Furthermore, we\ndeploy variational prior replacement to calculate Bayesian solutions\ncorresponding to different classes of prior information at low additional cost,\nand analyse those prior hypotheses by constructing Bayesian L-curves. This\nreveals the sensitivity of the inversion process to different prior\nassumptions. Thus we show that fully probabilistic 3D FWI can be performed at a\ncost that may be practical in small FWI problems, and can be used to test\ndifferent prior hypotheses.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient 3D Bayesian Full Waveform Inversion and Analysis of Prior Hypotheses\",\"authors\":\"Xuebin Zhao, Andrew Curtis\",\"doi\":\"arxiv-2409.09746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatially 3-dimensional seismic full waveform inversion (3D FWI) is a highly\\nnonlinear and computationally demanding inverse problem that constructs 3D\\nsubsurface seismic velocity structures using seismic waveform data. To\\ncharacterise non-uniqueness in the solutions we demonstrate Bayesian 3D FWI\\nusing an efficient method called physically structured variational inference\\napplied to 3D acoustic Bayesian FWI. The results provide reasonable posterior\\nuncertainty estimates, at a computational cost that is only an order of\\nmagnitude greater than that of standard, deterministic FWI. Furthermore, we\\ndeploy variational prior replacement to calculate Bayesian solutions\\ncorresponding to different classes of prior information at low additional cost,\\nand analyse those prior hypotheses by constructing Bayesian L-curves. This\\nreveals the sensitivity of the inversion process to different prior\\nassumptions. Thus we show that fully probabilistic 3D FWI can be performed at a\\ncost that may be practical in small FWI problems, and can be used to test\\ndifferent prior hypotheses.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间三维地震全波形反演(3D FWI)是一个高度非线性和计算要求极高的反演问题,它利用地震波形数据构建三维次表层地震速度结构。为了描述解的非唯一性,我们演示了贝叶斯三维 FWI,将一种称为物理结构变异推理的高效方法应用于三维声学贝叶斯 FWI。结果提供了合理的后验不确定性估计,计算成本仅比标准的确定性 FWI 高一个数量级。此外,我们还采用变异先验替换法,以较低的额外成本计算出与不同类别先验信息相对应的贝叶斯解,并通过构建贝叶斯 L 曲线对这些先验假设进行分析。这揭示了反演过程对不同先验假设的敏感性。因此,我们证明了全概率三维全维反演可以在小型全维反演问题中以实用的成本进行,并可用于测试不同的先验假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient 3D Bayesian Full Waveform Inversion and Analysis of Prior Hypotheses
Spatially 3-dimensional seismic full waveform inversion (3D FWI) is a highly nonlinear and computationally demanding inverse problem that constructs 3D subsurface seismic velocity structures using seismic waveform data. To characterise non-uniqueness in the solutions we demonstrate Bayesian 3D FWI using an efficient method called physically structured variational inference applied to 3D acoustic Bayesian FWI. The results provide reasonable posterior uncertainty estimates, at a computational cost that is only an order of magnitude greater than that of standard, deterministic FWI. Furthermore, we deploy variational prior replacement to calculate Bayesian solutions corresponding to different classes of prior information at low additional cost, and analyse those prior hypotheses by constructing Bayesian L-curves. This reveals the sensitivity of the inversion process to different prior assumptions. Thus we show that fully probabilistic 3D FWI can be performed at a cost that may be practical in small FWI problems, and can be used to test different prior hypotheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Groundwater dynamics beneath a marine ice sheet Generalized failure law for landslides, rockbursts, glacier breakoffs, and volcanic eruptions DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models The Arpu Kuilpu Meteorite: In-depth characterization of an H5 chondrite delivered from a Jupiter Family Comet orbit The Sun's Birth Environment: Context for Meteoritics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1