Adrian van Kan, Keith Julien, Benjamin Miquel, Edgar Knobloch
{"title":"缩小快速旋转热对流中的罗斯比数差距","authors":"Adrian van Kan, Keith Julien, Benjamin Miquel, Edgar Knobloch","doi":"arxiv-2409.08536","DOIUrl":null,"url":null,"abstract":"Geophysical and astrophysical fluid flows are typically buoyantly driven and\nare strongly constrained by planetary rotation at large scales. Rapidly\nrotating Rayleigh-B\\'enard convection (RRRBC) provides a paradigm for direct\nnumerical simulations (DNS) and laboratory studies of such flows, but the\naccessible parameter space remains restricted to moderately fast rotation\n(Ekman numbers $\\rm Ek \\gtrsim 10^{-8}$), while realistic $\\rm Ek$ for\nastro-/geophysical applications are significantly smaller. Reduced equations of\nmotion, the non-hydrostatic quasi-geostrophic equations describing the\nleading-order behavior in the limit of rapid rotation ($\\rm Ek \\to 0$) cannot\ncapture finite rotation effects, leaving the physically most relevant part of\nparameter space with small but finite $\\rm Ek$ currently inaccessible. Here, we\nintroduce the rescaled incompressible Navier-Stokes equations (RiNSE), a\nreformulation of the Navier-Stokes-Boussinesq equations informed by the\nscalings valid for $\\rm Ek\\to 0$. We provide the first full DNS of RRRBC at\nunprecedented rotation strengths down to $\\rm Ek=10^{-15}$ and below and show\nthat the RiNSE converge to the asymptotically reduced equations.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bridging the Rossby number gap in rapidly rotating thermal convection\",\"authors\":\"Adrian van Kan, Keith Julien, Benjamin Miquel, Edgar Knobloch\",\"doi\":\"arxiv-2409.08536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geophysical and astrophysical fluid flows are typically buoyantly driven and\\nare strongly constrained by planetary rotation at large scales. Rapidly\\nrotating Rayleigh-B\\\\'enard convection (RRRBC) provides a paradigm for direct\\nnumerical simulations (DNS) and laboratory studies of such flows, but the\\naccessible parameter space remains restricted to moderately fast rotation\\n(Ekman numbers $\\\\rm Ek \\\\gtrsim 10^{-8}$), while realistic $\\\\rm Ek$ for\\nastro-/geophysical applications are significantly smaller. Reduced equations of\\nmotion, the non-hydrostatic quasi-geostrophic equations describing the\\nleading-order behavior in the limit of rapid rotation ($\\\\rm Ek \\\\to 0$) cannot\\ncapture finite rotation effects, leaving the physically most relevant part of\\nparameter space with small but finite $\\\\rm Ek$ currently inaccessible. Here, we\\nintroduce the rescaled incompressible Navier-Stokes equations (RiNSE), a\\nreformulation of the Navier-Stokes-Boussinesq equations informed by the\\nscalings valid for $\\\\rm Ek\\\\to 0$. We provide the first full DNS of RRRBC at\\nunprecedented rotation strengths down to $\\\\rm Ek=10^{-15}$ and below and show\\nthat the RiNSE converge to the asymptotically reduced equations.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
地球物理和天体物理流体流动通常由浮力驱动,在大尺度上受到行星自转的强烈制约。快速旋转瑞利对流(RRRBC)为此类流体的直接数值模拟(DNS)和实验室研究提供了范例,但可获取的参数空间仍然局限于中速旋转(Ekman 数 $\rm Ek \gtrsim 10^{-8}$),而用于地球/地球物理应用的现实 $\rm Ek$ 则要小得多。描述快速旋转($\rm Ek \to 0$)极限中前导阶行为的非流体静力学准地转方程无法捕捉有限旋转效应,使得参数空间中物理上最相关的、具有较小但有限的 $\rm Ek$ 的部分目前无法进入。在这里,我们引入了重标定不可压缩纳维-斯托克斯方程(RiNSE),它是纳维-斯托克斯-布西尼斯克方程的一种形式,其标定结果对 $\rm Ek\to 0$ 有效。我们首次提供了前所未见的旋转强度低至$\rm Ek=10^{-15}$及以下的RRRBC的完整DNS,并证明RiNSE收敛于渐近简化方程。
Bridging the Rossby number gap in rapidly rotating thermal convection
Geophysical and astrophysical fluid flows are typically buoyantly driven and
are strongly constrained by planetary rotation at large scales. Rapidly
rotating Rayleigh-B\'enard convection (RRRBC) provides a paradigm for direct
numerical simulations (DNS) and laboratory studies of such flows, but the
accessible parameter space remains restricted to moderately fast rotation
(Ekman numbers $\rm Ek \gtrsim 10^{-8}$), while realistic $\rm Ek$ for
astro-/geophysical applications are significantly smaller. Reduced equations of
motion, the non-hydrostatic quasi-geostrophic equations describing the
leading-order behavior in the limit of rapid rotation ($\rm Ek \to 0$) cannot
capture finite rotation effects, leaving the physically most relevant part of
parameter space with small but finite $\rm Ek$ currently inaccessible. Here, we
introduce the rescaled incompressible Navier-Stokes equations (RiNSE), a
reformulation of the Navier-Stokes-Boussinesq equations informed by the
scalings valid for $\rm Ek\to 0$. We provide the first full DNS of RRRBC at
unprecedented rotation strengths down to $\rm Ek=10^{-15}$ and below and show
that the RiNSE converge to the asymptotically reduced equations.