{"title":"星形胶质细胞介导的神经元不规则性和动力学:三方突触的复杂性","authors":"Den Whilrex Garcia, Sabir Jacquir","doi":"10.1007/s00422-024-00994-z","DOIUrl":null,"url":null,"abstract":"<p>Despite significant advancements in recent decades, gaining a comprehensive understanding of brain computations remains a significant challenge in neuroscience. Using computational models is crucial for unraveling this complex phenomenon and is equally indispensable for studying neurological disorders. This endeavor has created many neuronal models that capture brain dynamics at various scales and complexities. However, most existing models do not account for the potential influence of glial cells, particularly astrocytes, on neuronal physiology. This gap persists even with the emerging evidence indicating their critical role in regulating neural network activity, plasticity, and even neurological pathologies. To address this gap, some works proposed models that include neuron–glia interactions. Also, while some literature focuses on sophisticated models of neuron–glia interactions that mimic the complexity of physiological phenomena, there are also existing works that propose simplified models of neural–glial ensembles. Building upon these efforts, we aimed to contribute further to the field by proposing a simplified tripartite synapse model that encompasses the presynaptic neuron, postsynaptic neuron, and astrocyte. We defined the tripartite synapse model based on the Adaptive Exponential Integrate-and-Fire neuron model and a simplified scheme of the astrocyte model previously proposed by Postnov. Through our simulations, we demonstrated how astrocytes can influence neuronal firing behavior by sequentially activating and deactivating different pathways within the tripartite synapse. This modulation by astrocytes can shape neuronal behavior and introduce irregularities in the firing patterns of both presynaptic and postsynaptic neurons through the introduction of new pathways and configurations of relevant parameters.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":"314 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse\",\"authors\":\"Den Whilrex Garcia, Sabir Jacquir\",\"doi\":\"10.1007/s00422-024-00994-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Despite significant advancements in recent decades, gaining a comprehensive understanding of brain computations remains a significant challenge in neuroscience. Using computational models is crucial for unraveling this complex phenomenon and is equally indispensable for studying neurological disorders. This endeavor has created many neuronal models that capture brain dynamics at various scales and complexities. However, most existing models do not account for the potential influence of glial cells, particularly astrocytes, on neuronal physiology. This gap persists even with the emerging evidence indicating their critical role in regulating neural network activity, plasticity, and even neurological pathologies. To address this gap, some works proposed models that include neuron–glia interactions. Also, while some literature focuses on sophisticated models of neuron–glia interactions that mimic the complexity of physiological phenomena, there are also existing works that propose simplified models of neural–glial ensembles. Building upon these efforts, we aimed to contribute further to the field by proposing a simplified tripartite synapse model that encompasses the presynaptic neuron, postsynaptic neuron, and astrocyte. We defined the tripartite synapse model based on the Adaptive Exponential Integrate-and-Fire neuron model and a simplified scheme of the astrocyte model previously proposed by Postnov. Through our simulations, we demonstrated how astrocytes can influence neuronal firing behavior by sequentially activating and deactivating different pathways within the tripartite synapse. This modulation by astrocytes can shape neuronal behavior and introduce irregularities in the firing patterns of both presynaptic and postsynaptic neurons through the introduction of new pathways and configurations of relevant parameters.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":\"314 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-024-00994-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-024-00994-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Astrocyte-mediated neuronal irregularities and dynamics: the complexity of the tripartite synapse
Despite significant advancements in recent decades, gaining a comprehensive understanding of brain computations remains a significant challenge in neuroscience. Using computational models is crucial for unraveling this complex phenomenon and is equally indispensable for studying neurological disorders. This endeavor has created many neuronal models that capture brain dynamics at various scales and complexities. However, most existing models do not account for the potential influence of glial cells, particularly astrocytes, on neuronal physiology. This gap persists even with the emerging evidence indicating their critical role in regulating neural network activity, plasticity, and even neurological pathologies. To address this gap, some works proposed models that include neuron–glia interactions. Also, while some literature focuses on sophisticated models of neuron–glia interactions that mimic the complexity of physiological phenomena, there are also existing works that propose simplified models of neural–glial ensembles. Building upon these efforts, we aimed to contribute further to the field by proposing a simplified tripartite synapse model that encompasses the presynaptic neuron, postsynaptic neuron, and astrocyte. We defined the tripartite synapse model based on the Adaptive Exponential Integrate-and-Fire neuron model and a simplified scheme of the astrocyte model previously proposed by Postnov. Through our simulations, we demonstrated how astrocytes can influence neuronal firing behavior by sequentially activating and deactivating different pathways within the tripartite synapse. This modulation by astrocytes can shape neuronal behavior and introduce irregularities in the firing patterns of both presynaptic and postsynaptic neurons through the introduction of new pathways and configurations of relevant parameters.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.