Chao‐Cheng Cho, Cheng‐Yin Fei, Bo‐Chen Jiang, Wei‐Zen Yang, Hanna S. Yuan
{"title":"与ICF综合征相关的DNMT3B突变诱发DNA甲基化缺陷的分子机制","authors":"Chao‐Cheng Cho, Cheng‐Yin Fei, Bo‐Chen Jiang, Wei‐Zen Yang, Hanna S. Yuan","doi":"10.1002/pro.5131","DOIUrl":null,"url":null,"abstract":"DNA methyltransferase 3B (DNMT3B) plays a crucial role in DNA methylation during mammalian development. Mutations in DNMT3B are associated with human genetic diseases, particularly immunodeficiency, centromere instability, facial anomalies (ICF) syndrome. Although ICF syndrome‐related missense mutations in the DNMT3B have been identified, their precise impact on protein structure and function remains inadequately explored. Here, we delve into the impact of four ICF syndrome‐linked mutations situated in the DNMT3B dimeric interface (H814R, D817G, V818M, and R823G), revealing that each of these mutations compromises DNA‐binding and methyltransferase activities to varying degrees. We further show that H814R, D817G, and V818M mutations severely disrupt the proper assembly of DNMT3B homodimer, whereas R823G does not. We also determined the first crystal structure of the methyltransferase domain of DNMT3B‐DNMT3L tetrameric complex hosting the R823G mutation showing that the R823G mutant displays diminished hydrogen bonding interactions around T775, K777, G823, and Q827 in the protein‐DNA interface, resulting in reduced DNA‐binding affinity and a shift in sequence preference of +1 to +3 flanking positions. Altogether, our study uncovers a wide array of fundamental defects triggered by DNMT3B mutations, including the disassembly of DNMT3B dimers, reduced DNA‐binding capacity, and alterations in flanking sequence preferences, leading to aberrant DNA hypomethylation and ICF syndrome.","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"10 1","pages":"e5131"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms for DNA methylation defects induced by ICF syndrome‐linked mutations in DNMT3B\",\"authors\":\"Chao‐Cheng Cho, Cheng‐Yin Fei, Bo‐Chen Jiang, Wei‐Zen Yang, Hanna S. Yuan\",\"doi\":\"10.1002/pro.5131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA methyltransferase 3B (DNMT3B) plays a crucial role in DNA methylation during mammalian development. Mutations in DNMT3B are associated with human genetic diseases, particularly immunodeficiency, centromere instability, facial anomalies (ICF) syndrome. Although ICF syndrome‐related missense mutations in the DNMT3B have been identified, their precise impact on protein structure and function remains inadequately explored. Here, we delve into the impact of four ICF syndrome‐linked mutations situated in the DNMT3B dimeric interface (H814R, D817G, V818M, and R823G), revealing that each of these mutations compromises DNA‐binding and methyltransferase activities to varying degrees. We further show that H814R, D817G, and V818M mutations severely disrupt the proper assembly of DNMT3B homodimer, whereas R823G does not. We also determined the first crystal structure of the methyltransferase domain of DNMT3B‐DNMT3L tetrameric complex hosting the R823G mutation showing that the R823G mutant displays diminished hydrogen bonding interactions around T775, K777, G823, and Q827 in the protein‐DNA interface, resulting in reduced DNA‐binding affinity and a shift in sequence preference of +1 to +3 flanking positions. Altogether, our study uncovers a wide array of fundamental defects triggered by DNMT3B mutations, including the disassembly of DNMT3B dimers, reduced DNA‐binding capacity, and alterations in flanking sequence preferences, leading to aberrant DNA hypomethylation and ICF syndrome.\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"10 1\",\"pages\":\"e5131\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5131\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5131","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular mechanisms for DNA methylation defects induced by ICF syndrome‐linked mutations in DNMT3B
DNA methyltransferase 3B (DNMT3B) plays a crucial role in DNA methylation during mammalian development. Mutations in DNMT3B are associated with human genetic diseases, particularly immunodeficiency, centromere instability, facial anomalies (ICF) syndrome. Although ICF syndrome‐related missense mutations in the DNMT3B have been identified, their precise impact on protein structure and function remains inadequately explored. Here, we delve into the impact of four ICF syndrome‐linked mutations situated in the DNMT3B dimeric interface (H814R, D817G, V818M, and R823G), revealing that each of these mutations compromises DNA‐binding and methyltransferase activities to varying degrees. We further show that H814R, D817G, and V818M mutations severely disrupt the proper assembly of DNMT3B homodimer, whereas R823G does not. We also determined the first crystal structure of the methyltransferase domain of DNMT3B‐DNMT3L tetrameric complex hosting the R823G mutation showing that the R823G mutant displays diminished hydrogen bonding interactions around T775, K777, G823, and Q827 in the protein‐DNA interface, resulting in reduced DNA‐binding affinity and a shift in sequence preference of +1 to +3 flanking positions. Altogether, our study uncovers a wide array of fundamental defects triggered by DNMT3B mutations, including the disassembly of DNMT3B dimers, reduced DNA‐binding capacity, and alterations in flanking sequence preferences, leading to aberrant DNA hypomethylation and ICF syndrome.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).