氧官能团修饰的石墨烯产生 H2O2 的反应机制和动力学:水环境的影响

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY New Journal of Chemistry Pub Date : 2024-09-18 DOI:10.1039/D4NJ03228D
Shiyi Zhang, Feifei Jiang, Yuanjie Zheng, Wenjing Tu, Shuoshuo Fu, Guangxu Chen and Yun Zhao
{"title":"氧官能团修饰的石墨烯产生 H2O2 的反应机制和动力学:水环境的影响","authors":"Shiyi Zhang, Feifei Jiang, Yuanjie Zheng, Wenjing Tu, Shuoshuo Fu, Guangxu Chen and Yun Zhao","doi":"10.1039/D4NJ03228D","DOIUrl":null,"url":null,"abstract":"<p >Carbon-based materials incorporated with oxygen functional groups (OFGs-Gr) exhibit outstanding electrocatalytic performance for hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) production <em>via</em> the two-electron oxygen reduction reaction (2e<small><sup>−</sup></small> ORR). Currently, the nature of the active functional group and the underlying reaction mechanism are still under debate. Herein, we constructed the OFGs-Gr structures and systematically investigated the effect of the aqueous environment (including pH and electrode potential) on the catalyst performance in combination with <em>ab initio</em> molecular dynamics (AIMD). The carboxyl group (COOH-Gr structure) plays a key role in the neutral solution environment. The water molecules on COOH-Gr effectively modified the interaction of the C sites with OOH. The adsorption strength of OOH increases with increasing pH, resulting in an ether group (dopant-Gr in the C–O–C structure), maintaining excellent properties in alkaline media. Furthermore, our calculations demonstrate that the selectivity of H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation for dopant-Gr is increased by an elevated electrode potential, while the selectivity for COOH-Gr is decreased. These findings provide a dynamic perspective that elucidates that both pH and electrode potential synergistically influence the catalytic properties for H<small><sub>2</sub></small>O<small><sub>2</sub></small> synthesis.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The reaction mechanism and kinetics of H2O2 production on graphene modified by oxygen functional groups: the effect of an aqueous environment†\",\"authors\":\"Shiyi Zhang, Feifei Jiang, Yuanjie Zheng, Wenjing Tu, Shuoshuo Fu, Guangxu Chen and Yun Zhao\",\"doi\":\"10.1039/D4NJ03228D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Carbon-based materials incorporated with oxygen functional groups (OFGs-Gr) exhibit outstanding electrocatalytic performance for hydrogen peroxide (H<small><sub>2</sub></small>O<small><sub>2</sub></small>) production <em>via</em> the two-electron oxygen reduction reaction (2e<small><sup>−</sup></small> ORR). Currently, the nature of the active functional group and the underlying reaction mechanism are still under debate. Herein, we constructed the OFGs-Gr structures and systematically investigated the effect of the aqueous environment (including pH and electrode potential) on the catalyst performance in combination with <em>ab initio</em> molecular dynamics (AIMD). The carboxyl group (COOH-Gr structure) plays a key role in the neutral solution environment. The water molecules on COOH-Gr effectively modified the interaction of the C sites with OOH. The adsorption strength of OOH increases with increasing pH, resulting in an ether group (dopant-Gr in the C–O–C structure), maintaining excellent properties in alkaline media. Furthermore, our calculations demonstrate that the selectivity of H<small><sub>2</sub></small>O<small><sub>2</sub></small> generation for dopant-Gr is increased by an elevated electrode potential, while the selectivity for COOH-Gr is decreased. These findings provide a dynamic perspective that elucidates that both pH and electrode potential synergistically influence the catalytic properties for H<small><sub>2</sub></small>O<small><sub>2</sub></small> synthesis.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03228d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03228d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

含有氧官能团(OFGs-Gr)的碳基材料在通过双电子氧还原反应(2e- ORR)产生过氧化氢(H2O2)方面表现出卓越的电催化性能。目前,活性官能团的性质及其反应机理仍存在争议。在此,我们构建了 OFGs-Gr 结构,并结合 ab initio 分子动力学(AIMD)系统地研究了水环境(包括 pH 值和电极电位)对催化剂性能的影响。羧基(COOH-Gr 结构)在中性溶液环境中起着关键作用。COOH-Gr 上的水分子有效地改变了 C 位点与 OOH 的相互作用。OOH 的吸附强度随着 pH 值的升高而增加,从而使醚基(C-O-C 结构中的 Dopant-Gr)在碱性介质中保持优异的性能。此外,我们的计算表明,电极电位升高会增加 Dopant-Gr 生成 H2O2 的选择性,而 COOH-Gr 的选择性则会降低。这些发现提供了一个动态视角,阐明了 pH 值和电极电位对 H2O2 合成催化特性的协同影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The reaction mechanism and kinetics of H2O2 production on graphene modified by oxygen functional groups: the effect of an aqueous environment†

Carbon-based materials incorporated with oxygen functional groups (OFGs-Gr) exhibit outstanding electrocatalytic performance for hydrogen peroxide (H2O2) production via the two-electron oxygen reduction reaction (2e ORR). Currently, the nature of the active functional group and the underlying reaction mechanism are still under debate. Herein, we constructed the OFGs-Gr structures and systematically investigated the effect of the aqueous environment (including pH and electrode potential) on the catalyst performance in combination with ab initio molecular dynamics (AIMD). The carboxyl group (COOH-Gr structure) plays a key role in the neutral solution environment. The water molecules on COOH-Gr effectively modified the interaction of the C sites with OOH. The adsorption strength of OOH increases with increasing pH, resulting in an ether group (dopant-Gr in the C–O–C structure), maintaining excellent properties in alkaline media. Furthermore, our calculations demonstrate that the selectivity of H2O2 generation for dopant-Gr is increased by an elevated electrode potential, while the selectivity for COOH-Gr is decreased. These findings provide a dynamic perspective that elucidates that both pH and electrode potential synergistically influence the catalytic properties for H2O2 synthesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
期刊最新文献
Back cover Back cover Regular pentagonal folded La doped CoNiOOH@FeSe@NiSe/NF nanosheet array for high efficiency alkaline electrocatalytic oxygen evolution reaction† Dinitromethyltetrazole (DNMT)-based energetic coordination polymers (ECPs) as lead-free primary explosives and laser initiators† Excellent lithium storage performance of Ni-MOFs/GO composite as anode in lithium ion battery†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1