快速分析 OpenAI O1-Preview 模型在解决随机 K-SAT 问题中的作用:LLM 是自己解决问题还是调用外部 SAT 解算器?

Raffaele Marino
{"title":"快速分析 OpenAI O1-Preview 模型在解决随机 K-SAT 问题中的作用:LLM 是自己解决问题还是调用外部 SAT 解算器?","authors":"Raffaele Marino","doi":"arxiv-2409.11232","DOIUrl":null,"url":null,"abstract":"In this manuscript I present an analysis on the performance of OpenAI\nO1-preview model in solving random K-SAT instances for K$\\in {2,3,4}$ as a\nfunction of $\\alpha=M/N$ where $M$ is the number of clauses and $N$ is the\nnumber of variables of the satisfiable problem. I show that the model can call\nan external SAT solver to solve the instances, rather than solving them\ndirectly. Despite using external solvers, the model reports incorrect\nassignments as output. Moreover, I propose and present an analysis to quantify\nwhether the OpenAI O1-preview model demonstrates a spark of intelligence or\nmerely makes random guesses when outputting an assignment for a Boolean\nsatisfiability problem.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver?\",\"authors\":\"Raffaele Marino\",\"doi\":\"arxiv-2409.11232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript I present an analysis on the performance of OpenAI\\nO1-preview model in solving random K-SAT instances for K$\\\\in {2,3,4}$ as a\\nfunction of $\\\\alpha=M/N$ where $M$ is the number of clauses and $N$ is the\\nnumber of variables of the satisfiable problem. I show that the model can call\\nan external SAT solver to solve the instances, rather than solving them\\ndirectly. Despite using external solvers, the model reports incorrect\\nassignments as output. Moreover, I propose and present an analysis to quantify\\nwhether the OpenAI O1-preview model demonstrates a spark of intelligence or\\nmerely makes random guesses when outputting an assignment for a Boolean\\nsatisfiability problem.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本手稿中,我分析了 OpenAIO1-preview 模型在求解 K$\in {2,3,4}$ 的随机 K-SAT 实例时的性能,K$\in {2,3,4}$ 是 $\alpha=M/N$ 的函数,其中 $M$ 是条款数,$N$ 是可满足问题的变量数。我展示了该模型可以调用外部 SAT 求解器来求解实例,而不是直接求解。尽管使用了外部求解器,模型还是会将错误的分配作为输出报告。此外,我还提出并展示了一项分析,以量化OpenAI O1-preview模型在输出布尔可满足性问题的赋值时,是展现出了智慧的火花,还是仅仅是随机猜测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver?
In this manuscript I present an analysis on the performance of OpenAI O1-preview model in solving random K-SAT instances for K$\in {2,3,4}$ as a function of $\alpha=M/N$ where $M$ is the number of clauses and $N$ is the number of variables of the satisfiable problem. I show that the model can call an external SAT solver to solve the instances, rather than solving them directly. Despite using external solvers, the model reports incorrect assignments as output. Moreover, I propose and present an analysis to quantify whether the OpenAI O1-preview model demonstrates a spark of intelligence or merely makes random guesses when outputting an assignment for a Boolean satisfiability problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1