胶质细胞生物学

IF 6.9 2区 生物学 Q1 CELL BIOLOGY Cold Spring Harbor perspectives in biology Pub Date : 2024-09-16 DOI:10.1101/cshperspect.a041809
Beth Stevens, Kelly R. Monk, Marc R. Freeman
{"title":"胶质细胞生物学","authors":"Beth Stevens, Kelly R. Monk, Marc R. Freeman","doi":"10.1101/cshperspect.a041809","DOIUrl":null,"url":null,"abstract":"Glial cells play critical roles in the nervous system. Rather than being passive support cells as long thought, they are highly active participants. Recent work has shed new light on their many functions, include regulation of synapse formation and function, control of neural circuits, and neuro-immune interactions. It is also shedding light on the part they play in neurodegenerative diseases and malignancies such as glioma, as well as the process of axonal regeneration and CNS repair.","PeriodicalId":10494,"journal":{"name":"Cold Spring Harbor perspectives in biology","volume":"117 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Biology of Glia\",\"authors\":\"Beth Stevens, Kelly R. Monk, Marc R. Freeman\",\"doi\":\"10.1101/cshperspect.a041809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glial cells play critical roles in the nervous system. Rather than being passive support cells as long thought, they are highly active participants. Recent work has shed new light on their many functions, include regulation of synapse formation and function, control of neural circuits, and neuro-immune interactions. It is also shedding light on the part they play in neurodegenerative diseases and malignancies such as glioma, as well as the process of axonal regeneration and CNS repair.\",\"PeriodicalId\":10494,\"journal\":{\"name\":\"Cold Spring Harbor perspectives in biology\",\"volume\":\"117 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Spring Harbor perspectives in biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/cshperspect.a041809\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor perspectives in biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/cshperspect.a041809","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

神经胶质细胞在神经系统中发挥着至关重要的作用。神经胶质细胞并非长期以来所认为的被动支持细胞,而是高度活跃的参与者。最新研究揭示了神经胶质细胞的多种功能,包括调节突触的形成和功能、控制神经回路以及神经免疫相互作用。研究还揭示了它们在神经退行性疾病和恶性肿瘤(如胶质瘤)中的作用,以及轴突再生和中枢神经系统修复过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Biology of Glia
Glial cells play critical roles in the nervous system. Rather than being passive support cells as long thought, they are highly active participants. Recent work has shed new light on their many functions, include regulation of synapse formation and function, control of neural circuits, and neuro-immune interactions. It is also shedding light on the part they play in neurodegenerative diseases and malignancies such as glioma, as well as the process of axonal regeneration and CNS repair.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
15.00
自引率
1.40%
发文量
56
审稿时长
3-8 weeks
期刊介绍: Cold Spring Harbor Perspectives in Biology offers a comprehensive platform in the molecular life sciences, featuring reviews that span molecular, cell, and developmental biology, genetics, neuroscience, immunology, cancer biology, and molecular pathology. This online publication provides in-depth insights into various topics, making it a valuable resource for those engaged in diverse aspects of biological research.
期刊最新文献
Mechanisms of Alternative Lengthening of Telomeres. Rediscovering and Unrediscovering Gregor Mendel: His Life, Times, and Intellectual Context. Teaching School Genetics in the 2020s: Why "Naive" Mendelian Genetics Has to Go. The Role of Microhomology-Mediated End Joining (MMEJ) at Dysfunctional Telomeres. Modeling the Emergence of Circuit Organization and Function during Development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1