通过多层次对比约束增强无遗忘的少拍分类功能

Bingzhi Chen, Haoming Zhou, Yishu Liu, Biqing Zeng, Jiahui Pan, Guangming Lu
{"title":"通过多层次对比约束增强无遗忘的少拍分类功能","authors":"Bingzhi Chen, Haoming Zhou, Yishu Liu, Biqing Zeng, Jiahui Pan, Guangming Lu","doi":"arxiv-2409.11286","DOIUrl":null,"url":null,"abstract":"Most recent few-shot learning approaches are based on meta-learning with\nepisodic training. However, prior studies encounter two crucial problems: (1)\n\\textit{the presence of inductive bias}, and (2) \\textit{the occurrence of\ncatastrophic forgetting}. In this paper, we propose a novel Multi-Level\nContrastive Constraints (MLCC) framework, that jointly integrates\nwithin-episode learning and across-episode learning into a unified interactive\nlearning paradigm to solve these issues. Specifically, we employ a space-aware\ninteraction modeling scheme to explore the correct inductive paradigms for each\nclass between within-episode similarity/dis-similarity distributions.\nAdditionally, with the aim of better utilizing former prior knowledge, a\ncross-stage distribution adaption strategy is designed to align the\nacross-episode distributions from different time stages, thus reducing the\nsemantic gap between existing and past prediction distribution. Extensive\nexperiments on multiple few-shot datasets demonstrate the consistent\nsuperiority of MLCC approach over the existing state-of-the-art baselines.","PeriodicalId":501480,"journal":{"name":"arXiv - CS - Multimedia","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints\",\"authors\":\"Bingzhi Chen, Haoming Zhou, Yishu Liu, Biqing Zeng, Jiahui Pan, Guangming Lu\",\"doi\":\"arxiv-2409.11286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most recent few-shot learning approaches are based on meta-learning with\\nepisodic training. However, prior studies encounter two crucial problems: (1)\\n\\\\textit{the presence of inductive bias}, and (2) \\\\textit{the occurrence of\\ncatastrophic forgetting}. In this paper, we propose a novel Multi-Level\\nContrastive Constraints (MLCC) framework, that jointly integrates\\nwithin-episode learning and across-episode learning into a unified interactive\\nlearning paradigm to solve these issues. Specifically, we employ a space-aware\\ninteraction modeling scheme to explore the correct inductive paradigms for each\\nclass between within-episode similarity/dis-similarity distributions.\\nAdditionally, with the aim of better utilizing former prior knowledge, a\\ncross-stage distribution adaption strategy is designed to align the\\nacross-episode distributions from different time stages, thus reducing the\\nsemantic gap between existing and past prediction distribution. Extensive\\nexperiments on multiple few-shot datasets demonstrate the consistent\\nsuperiority of MLCC approach over the existing state-of-the-art baselines.\",\"PeriodicalId\":501480,\"journal\":{\"name\":\"arXiv - CS - Multimedia\",\"volume\":\"201 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近来,大多数 "少量学习 "方法都是基于 "元学习"(meta-learning)和 "序列训练"(isodic training)。然而,之前的研究遇到了两个关键问题:(1)(textit{存在归纳偏差};(2)(textit{发生灾难性遗忘}。在本文中,我们提出了一个新颖的多层次对比约束(MLCC)框架,它将集内学习和跨集学习联合整合到一个统一的交互式学习范式中,以解决这些问题。此外,为了更好地利用以前的先验知识,我们还设计了跨阶段分布自适应策略,以调整不同时间阶段的跨集分布,从而缩小现有预测分布与过去预测分布之间的语义差距。在多个少量数据集上进行的广泛实验证明,MLCC 方法始终优于现有的最先进基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints
Most recent few-shot learning approaches are based on meta-learning with episodic training. However, prior studies encounter two crucial problems: (1) \textit{the presence of inductive bias}, and (2) \textit{the occurrence of catastrophic forgetting}. In this paper, we propose a novel Multi-Level Contrastive Constraints (MLCC) framework, that jointly integrates within-episode learning and across-episode learning into a unified interactive learning paradigm to solve these issues. Specifically, we employ a space-aware interaction modeling scheme to explore the correct inductive paradigms for each class between within-episode similarity/dis-similarity distributions. Additionally, with the aim of better utilizing former prior knowledge, a cross-stage distribution adaption strategy is designed to align the across-episode distributions from different time stages, thus reducing the semantic gap between existing and past prediction distribution. Extensive experiments on multiple few-shot datasets demonstrate the consistent superiority of MLCC approach over the existing state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vista3D: Unravel the 3D Darkside of a Single Image MoRAG -- Multi-Fusion Retrieval Augmented Generation for Human Motion Efficient Low-Resolution Face Recognition via Bridge Distillation Enhancing Few-Shot Classification without Forgetting through Multi-Level Contrastive Constraints NVLM: Open Frontier-Class Multimodal LLMs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1