{"title":"基于可视化模型流程的超前排水钻孔布局优化","authors":"Yue Li, Yunpeng Zhang, Yajie Ma, Fangang Meng","doi":"10.3390/w16182613","DOIUrl":null,"url":null,"abstract":"It is an effective measure to prevent water damage in coal mines in order to construct drainage boreholes in water-filled aquifers of a working face roof. The hydrogeological parameters of the roof water-filled aquifer and the parameters of the drainage borehole are closely related to the underground drainage effect. Taking the 3085 working face of the Donghuantuo Mine in Kailuan as an example, the influence degree of hydrogeological parameters and hydrophobic borehole parameters on the amount of drainage water was analyzed using the generalized gray correlation degree. Based on Visual Modflow, the 3D groundwater visualization model was established and the dredging borehole was generalized into the pumping borehole. By changing the main influencing factors, the design optimization of the advanced hydrophobic borehole was discussed. The results showed that the aquifer thickness had a great influence on the amount of water discharged, and the influence degree of the sharp angle between the formation and the direction of drilling, the depth of the final hole, the azimuth angle of drilling, the dip angle of drilling, the elevation of the final hole and the elevation of the borehole on the amount of water discharged decreased successively. Based on the simulation calculation, it could be observed that the hydrophobic borehole should be placed in a position with a larger accumulated thickness of the aquifer to have a better effect of hydrophobic depressurization.","PeriodicalId":23788,"journal":{"name":"Water","volume":"101 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Advance Drainage Borehole Layout Based on Visual Modflow\",\"authors\":\"Yue Li, Yunpeng Zhang, Yajie Ma, Fangang Meng\",\"doi\":\"10.3390/w16182613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is an effective measure to prevent water damage in coal mines in order to construct drainage boreholes in water-filled aquifers of a working face roof. The hydrogeological parameters of the roof water-filled aquifer and the parameters of the drainage borehole are closely related to the underground drainage effect. Taking the 3085 working face of the Donghuantuo Mine in Kailuan as an example, the influence degree of hydrogeological parameters and hydrophobic borehole parameters on the amount of drainage water was analyzed using the generalized gray correlation degree. Based on Visual Modflow, the 3D groundwater visualization model was established and the dredging borehole was generalized into the pumping borehole. By changing the main influencing factors, the design optimization of the advanced hydrophobic borehole was discussed. The results showed that the aquifer thickness had a great influence on the amount of water discharged, and the influence degree of the sharp angle between the formation and the direction of drilling, the depth of the final hole, the azimuth angle of drilling, the dip angle of drilling, the elevation of the final hole and the elevation of the borehole on the amount of water discharged decreased successively. Based on the simulation calculation, it could be observed that the hydrophobic borehole should be placed in a position with a larger accumulated thickness of the aquifer to have a better effect of hydrophobic depressurization.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16182613\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182613","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Optimization of Advance Drainage Borehole Layout Based on Visual Modflow
It is an effective measure to prevent water damage in coal mines in order to construct drainage boreholes in water-filled aquifers of a working face roof. The hydrogeological parameters of the roof water-filled aquifer and the parameters of the drainage borehole are closely related to the underground drainage effect. Taking the 3085 working face of the Donghuantuo Mine in Kailuan as an example, the influence degree of hydrogeological parameters and hydrophobic borehole parameters on the amount of drainage water was analyzed using the generalized gray correlation degree. Based on Visual Modflow, the 3D groundwater visualization model was established and the dredging borehole was generalized into the pumping borehole. By changing the main influencing factors, the design optimization of the advanced hydrophobic borehole was discussed. The results showed that the aquifer thickness had a great influence on the amount of water discharged, and the influence degree of the sharp angle between the formation and the direction of drilling, the depth of the final hole, the azimuth angle of drilling, the dip angle of drilling, the elevation of the final hole and the elevation of the borehole on the amount of water discharged decreased successively. Based on the simulation calculation, it could be observed that the hydrophobic borehole should be placed in a position with a larger accumulated thickness of the aquifer to have a better effect of hydrophobic depressurization.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.