Feicui Wang, Fu Wang, Ke Zhu, Peng Yang, Tiejun Wang, Yunzhuang Hu, Lijuan Ye
{"title":"过去 80 年天津-河北沿海湿地的时空动态和驱动因素","authors":"Feicui Wang, Fu Wang, Ke Zhu, Peng Yang, Tiejun Wang, Yunzhuang Hu, Lijuan Ye","doi":"10.3390/w16182612","DOIUrl":null,"url":null,"abstract":"Coastal wetland ecosystems are critical due to their diverse ecological and economic benefits, yet they have been significantly affected by human activities over the past century. Understanding the spatiotemporal changes and underlying factors influencing these ecosystems is crucial for developing effective ecological protection and restoration strategies. This study examines the Tianjin–Hebei coastal wetlands using topographic maps from the 1940s and Landsat satellite imagery from 1975, 2000, and 2020, supplemented by historical literature and field surveys. The aim is to analyze the distribution and classification of coastal wetlands across various temporal intervals. The findings indicate an expansion of the Tianjin–Hebei coastal wetlands from 7301.34 km2 in the 1940s to 8041.73 km2 in 2020. However, natural wetlands have declined by approximately 44.36 km2/year, while constructed wetlands have increased by around 53.61 km2/year. The wetlands have also become increasingly fragmented, with higher numbers of patches and densities. The analysis of driving factors points to human activities—such as urban construction, cultivated land reclamation, sea aquaculture, and land reclamation—as the primary contributors to these changes. Furthermore, the study addresses the ecological and environmental issues stemming from wetland changes and proposes strategies for wetland conservation. This research aims to enhance the understanding among researchers and policymakers of the dynamics and drivers of coastal wetland changes, as well as the major challenges in their protection, and to serve as a foundation for developing evidence-based conservation and restoration strategies.","PeriodicalId":23788,"journal":{"name":"Water","volume":"16 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatiotemporal Dynamics and Drivers of Coastal Wetlands in Tianjin–Hebei over the Past 80 Years\",\"authors\":\"Feicui Wang, Fu Wang, Ke Zhu, Peng Yang, Tiejun Wang, Yunzhuang Hu, Lijuan Ye\",\"doi\":\"10.3390/w16182612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal wetland ecosystems are critical due to their diverse ecological and economic benefits, yet they have been significantly affected by human activities over the past century. Understanding the spatiotemporal changes and underlying factors influencing these ecosystems is crucial for developing effective ecological protection and restoration strategies. This study examines the Tianjin–Hebei coastal wetlands using topographic maps from the 1940s and Landsat satellite imagery from 1975, 2000, and 2020, supplemented by historical literature and field surveys. The aim is to analyze the distribution and classification of coastal wetlands across various temporal intervals. The findings indicate an expansion of the Tianjin–Hebei coastal wetlands from 7301.34 km2 in the 1940s to 8041.73 km2 in 2020. However, natural wetlands have declined by approximately 44.36 km2/year, while constructed wetlands have increased by around 53.61 km2/year. The wetlands have also become increasingly fragmented, with higher numbers of patches and densities. The analysis of driving factors points to human activities—such as urban construction, cultivated land reclamation, sea aquaculture, and land reclamation—as the primary contributors to these changes. Furthermore, the study addresses the ecological and environmental issues stemming from wetland changes and proposes strategies for wetland conservation. This research aims to enhance the understanding among researchers and policymakers of the dynamics and drivers of coastal wetland changes, as well as the major challenges in their protection, and to serve as a foundation for developing evidence-based conservation and restoration strategies.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16182612\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182612","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Spatiotemporal Dynamics and Drivers of Coastal Wetlands in Tianjin–Hebei over the Past 80 Years
Coastal wetland ecosystems are critical due to their diverse ecological and economic benefits, yet they have been significantly affected by human activities over the past century. Understanding the spatiotemporal changes and underlying factors influencing these ecosystems is crucial for developing effective ecological protection and restoration strategies. This study examines the Tianjin–Hebei coastal wetlands using topographic maps from the 1940s and Landsat satellite imagery from 1975, 2000, and 2020, supplemented by historical literature and field surveys. The aim is to analyze the distribution and classification of coastal wetlands across various temporal intervals. The findings indicate an expansion of the Tianjin–Hebei coastal wetlands from 7301.34 km2 in the 1940s to 8041.73 km2 in 2020. However, natural wetlands have declined by approximately 44.36 km2/year, while constructed wetlands have increased by around 53.61 km2/year. The wetlands have also become increasingly fragmented, with higher numbers of patches and densities. The analysis of driving factors points to human activities—such as urban construction, cultivated land reclamation, sea aquaculture, and land reclamation—as the primary contributors to these changes. Furthermore, the study addresses the ecological and environmental issues stemming from wetland changes and proposes strategies for wetland conservation. This research aims to enhance the understanding among researchers and policymakers of the dynamics and drivers of coastal wetland changes, as well as the major challenges in their protection, and to serve as a foundation for developing evidence-based conservation and restoration strategies.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.