局部渐近二次随机场的简化准概率分析

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Annals of the Institute of Statistical Mathematics Pub Date : 2024-09-14 DOI:10.1007/s10463-024-00907-8
Nakahiro Yoshida
{"title":"局部渐近二次随机场的简化准概率分析","authors":"Nakahiro Yoshida","doi":"10.1007/s10463-024-00907-8","DOIUrl":null,"url":null,"abstract":"<p>The IHK program is a general framework in asymptotic decision theory, introduced by Ibragimov and Hasminskii and extended to semimartingales by Kutoyants. The quasi-likelihood analysis (QLA) asserts that a polynomial type large deviation inequality is always valid if the quasi-likelihood random field is asymptotically quadratic and if a key index reflecting the identifiability is non-degenerate. As a result, following the IHK program, the QLA gives a way to inference for various nonlinear stochastic processes. This paper provides a reformed and simplified version of the QLA and improves accessibility to the theory. As an example of the advantages of the scheme, the user can obtain asymptotic properties of the quasi-Bayesian estimator by only verifying non-degeneracy of the key index.</p>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field\",\"authors\":\"Nakahiro Yoshida\",\"doi\":\"10.1007/s10463-024-00907-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The IHK program is a general framework in asymptotic decision theory, introduced by Ibragimov and Hasminskii and extended to semimartingales by Kutoyants. The quasi-likelihood analysis (QLA) asserts that a polynomial type large deviation inequality is always valid if the quasi-likelihood random field is asymptotically quadratic and if a key index reflecting the identifiability is non-degenerate. As a result, following the IHK program, the QLA gives a way to inference for various nonlinear stochastic processes. This paper provides a reformed and simplified version of the QLA and improves accessibility to the theory. As an example of the advantages of the scheme, the user can obtain asymptotic properties of the quasi-Bayesian estimator by only verifying non-degeneracy of the key index.</p>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10463-024-00907-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10463-024-00907-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

IHK 程序是渐近决策理论的一般框架,由 Ibragimov 和 Hasminskii 提出,并由 Kutoyants 扩展到半马尔廷态。准概率分析(QLA)认为,如果准概率随机场是渐近二次型的,而且反映可识别性的关键指数是非退化的,那么多项式类型的大偏差不等式总是有效的。因此,按照 IHK 程序,QLA 为各种非线性随机过程提供了推理方法。本文对 QLA 进行了改革和简化,提高了理论的可及性。作为该方案优势的一个例子,用户只需验证关键指数的非退化性,就能获得准贝叶斯估计器的渐近特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field

The IHK program is a general framework in asymptotic decision theory, introduced by Ibragimov and Hasminskii and extended to semimartingales by Kutoyants. The quasi-likelihood analysis (QLA) asserts that a polynomial type large deviation inequality is always valid if the quasi-likelihood random field is asymptotically quadratic and if a key index reflecting the identifiability is non-degenerate. As a result, following the IHK program, the QLA gives a way to inference for various nonlinear stochastic processes. This paper provides a reformed and simplified version of the QLA and improves accessibility to the theory. As an example of the advantages of the scheme, the user can obtain asymptotic properties of the quasi-Bayesian estimator by only verifying non-degeneracy of the key index.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
期刊最新文献
Estimation of value-at-risk by $$L^{p}$$ quantile regression Simplified quasi-likelihood analysis for a locally asymptotically quadratic random field Asymptotic expected sensitivity function and its applications to measures of monotone association Penalized estimation for non-identifiable models Hidden AR process and adaptive Kalman filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1