基于取代型固溶体和钯金属间化合物的高效催化剂用于乙炔到乙烯的选择性加氢反应

IF 0.7 Q4 ENGINEERING, CHEMICAL Catalysis in Industry Pub Date : 2024-09-18 DOI:10.1134/S2070050424700156
D. A. Shlyapin, D. V. Yurpalova, T. N. Afonasenko, V. L. Temerev, A. V. Lavrenov
{"title":"基于取代型固溶体和钯金属间化合物的高效催化剂用于乙炔到乙烯的选择性加氢反应","authors":"D. A. Shlyapin,&nbsp;D. V. Yurpalova,&nbsp;T. N. Afonasenko,&nbsp;V. L. Temerev,&nbsp;A. V. Lavrenov","doi":"10.1134/S2070050424700156","DOIUrl":null,"url":null,"abstract":"<p>Features of the catalytic action of Pd–Ag, Pd–Cu, Pd–Au, Pd–Ga, and Pd–Zn bimetallic systems on the acetylene conversion to ethylene are discussed taking into account two factors that determine the effect of the second metal on palladium, namely, the “ensemble effect” (geometric effect) and the “ligand effect” (electronic effect). The relationship between the calculated thermodynamic and kinetic parameters of the adsorption interaction of major reaction medium components and intermediates with the catalyst surface, the structure of active ensembles, and characteristics determined in tests, such as the structural parameters of bimetallic phases, the electronic state of their components, and catalytic properties, is shown. Some examples are given to show that the modifier atoms can be incorporated into active ensembles and the sites formed by the modifier atoms can be involved in the catalysis of individual elementary steps.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 3","pages":"278 - 311"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Catalysts Based on Substitutional Solid Solutions and Palladium Intermetallic Compounds for the Selective Hydrogenation of Acetylene to Ethylene\",\"authors\":\"D. A. Shlyapin,&nbsp;D. V. Yurpalova,&nbsp;T. N. Afonasenko,&nbsp;V. L. Temerev,&nbsp;A. V. Lavrenov\",\"doi\":\"10.1134/S2070050424700156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Features of the catalytic action of Pd–Ag, Pd–Cu, Pd–Au, Pd–Ga, and Pd–Zn bimetallic systems on the acetylene conversion to ethylene are discussed taking into account two factors that determine the effect of the second metal on palladium, namely, the “ensemble effect” (geometric effect) and the “ligand effect” (electronic effect). The relationship between the calculated thermodynamic and kinetic parameters of the adsorption interaction of major reaction medium components and intermediates with the catalyst surface, the structure of active ensembles, and characteristics determined in tests, such as the structural parameters of bimetallic phases, the electronic state of their components, and catalytic properties, is shown. Some examples are given to show that the modifier atoms can be incorporated into active ensembles and the sites formed by the modifier atoms can be involved in the catalysis of individual elementary steps.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"16 3\",\"pages\":\"278 - 311\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050424700156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424700156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 讨论了Pd-Ag、Pd-Cu、Pd-Au、Pd-Ga和Pd-Zn双金属体系对乙炔转化为乙烯的催化作用的特点,同时考虑了决定第二种金属对钯的影响的两个因素,即 "集合效应"(几何效应)和 "配体效应"(电子效应)。计算得出的主要反应介质成分和中间产物与催化剂表面吸附相互作用的热力学和动力学参数、活性集合的结构以及在试验中确定的特征(如双金属相的结构参数、其成分的电子状态和催化特性)之间的关系得到了说明。举例说明了改性原子可以加入到活性组合中,改性原子形成的位点可以参与各个基本步骤的催化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Catalysts Based on Substitutional Solid Solutions and Palladium Intermetallic Compounds for the Selective Hydrogenation of Acetylene to Ethylene

Features of the catalytic action of Pd–Ag, Pd–Cu, Pd–Au, Pd–Ga, and Pd–Zn bimetallic systems on the acetylene conversion to ethylene are discussed taking into account two factors that determine the effect of the second metal on palladium, namely, the “ensemble effect” (geometric effect) and the “ligand effect” (electronic effect). The relationship between the calculated thermodynamic and kinetic parameters of the adsorption interaction of major reaction medium components and intermediates with the catalyst surface, the structure of active ensembles, and characteristics determined in tests, such as the structural parameters of bimetallic phases, the electronic state of their components, and catalytic properties, is shown. Some examples are given to show that the modifier atoms can be incorporated into active ensembles and the sites formed by the modifier atoms can be involved in the catalysis of individual elementary steps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
期刊最新文献
The Oxidative Chlorination of Hydrocarbons I: The Deacon Reaction. The Oxidative Chlorination of Saturated C1 and C2 Hydrocarbons The Oxidative Chlorination of Hydrocarbons II: The Oxidative Chlorination of Propylene, 1,3-Butadiene, Acetylene, and Benzene A Bifunctional Cobalt Catalyst for the Fischer–Tropsch Synthesis of Low Pour-Point Diesel Fuel, from Development to Implementation. Part 3: Experience from Creating an Industrial Technology of Preparation Preparing Hydroxylamine Sulfate via the Hydrogenation of NO on Pt/Graphite Catalysts III: Functionalizing the Surfaces of Supports and the Formation of the Active Component when Synthesizing the Catalyst Efficient Catalysts Based on Substitutional Solid Solutions and Palladium Intermetallic Compounds for the Selective Hydrogenation of Acetylene to Ethylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1