用于油馏分加氢处理以去除固体颗粒的催化剂防护装置:实验研究与计算

IF 0.7 Q4 ENGINEERING, CHEMICAL Catalysis in Industry Pub Date : 2024-09-18 DOI:10.1134/S207005042470017X
I. A. Mik, O. P. Klenov, M. O. Kazakov, K. A. Nadeina, O. V. Klimov, S. I. Reshetnikov, A. S. Noskov
{"title":"用于油馏分加氢处理以去除固体颗粒的催化剂防护装置:实验研究与计算","authors":"I. A. Mik,&nbsp;O. P. Klenov,&nbsp;M. O. Kazakov,&nbsp;K. A. Nadeina,&nbsp;O. V. Klimov,&nbsp;S. I. Reshetnikov,&nbsp;A. S. Noskov","doi":"10.1134/S207005042470017X","DOIUrl":null,"url":null,"abstract":"<p>The efficiency of trapping of solid microparticles contained in diesel fuel by a package loading of catalysts, which is a counterpart of an industrial package of guard bed hydroprocessing catalysts, is studied. The package of catalysts consists of catalyst pellets graded with respect to shape and size: segmented rings, hollow cylinders of two standard sizes, and pellets with a trilobe-shaped cross section. The tests are conducted in a trickle flow mode using a constant ensemble of microparticles—iron scale with a size of 5–150 µm—at the inlet of the package loading. It is found that the penetration coefficient of the package loading of guard bed catalysts does not change significantly (<i>K</i> ≈ 0.985) during the test. At the same time, the pressure drop across the 17-cm-high guard bed catalyst package linearly increases from 220 to 408 Pa due to the trapping of solid microparticles by the catalyst pellets. The theoretical estimate of the initial pressure drop (228 Pa) agrees with the test data (220 Pa) with fairly high accuracy.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 3","pages":"330 - 338"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guard of Catalysts for the Hydrotreating of Oil Fractions to Remove Solid Particles: Experimental Studies and Calculations\",\"authors\":\"I. A. Mik,&nbsp;O. P. Klenov,&nbsp;M. O. Kazakov,&nbsp;K. A. Nadeina,&nbsp;O. V. Klimov,&nbsp;S. I. Reshetnikov,&nbsp;A. S. Noskov\",\"doi\":\"10.1134/S207005042470017X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The efficiency of trapping of solid microparticles contained in diesel fuel by a package loading of catalysts, which is a counterpart of an industrial package of guard bed hydroprocessing catalysts, is studied. The package of catalysts consists of catalyst pellets graded with respect to shape and size: segmented rings, hollow cylinders of two standard sizes, and pellets with a trilobe-shaped cross section. The tests are conducted in a trickle flow mode using a constant ensemble of microparticles—iron scale with a size of 5–150 µm—at the inlet of the package loading. It is found that the penetration coefficient of the package loading of guard bed catalysts does not change significantly (<i>K</i> ≈ 0.985) during the test. At the same time, the pressure drop across the 17-cm-high guard bed catalyst package linearly increases from 220 to 408 Pa due to the trapping of solid microparticles by the catalyst pellets. The theoretical estimate of the initial pressure drop (228 Pa) agrees with the test data (220 Pa) with fairly high accuracy.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"16 3\",\"pages\":\"330 - 338\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S207005042470017X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S207005042470017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 研究了装载催化剂包对柴油中含有的固体微颗粒的捕集效率,该催化剂包是防护床加氢处理催化剂工业包的对应物。该催化剂包由不同形状和尺寸的催化剂颗粒组成:分段环形颗粒、两种标准尺寸的空心圆柱形颗粒和横截面为三叶形的颗粒。试验在涓流模式下进行,在装载包的入口处使用 5-150 微米大小的铁鳞状微颗粒的恒定组合。试验发现,在试验过程中,防护床催化剂包负载的渗透系数变化不大(K ≈ 0.985)。同时,由于固体微颗粒被催化剂颗粒截留,17 厘米高的防护床催化剂包上的压降从 220 Pa 线性增加到 408 Pa。初始压降的理论估计值(228 帕)与试验数据(220 帕)相当吻合,精确度相当高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Guard of Catalysts for the Hydrotreating of Oil Fractions to Remove Solid Particles: Experimental Studies and Calculations

The efficiency of trapping of solid microparticles contained in diesel fuel by a package loading of catalysts, which is a counterpart of an industrial package of guard bed hydroprocessing catalysts, is studied. The package of catalysts consists of catalyst pellets graded with respect to shape and size: segmented rings, hollow cylinders of two standard sizes, and pellets with a trilobe-shaped cross section. The tests are conducted in a trickle flow mode using a constant ensemble of microparticles—iron scale with a size of 5–150 µm—at the inlet of the package loading. It is found that the penetration coefficient of the package loading of guard bed catalysts does not change significantly (K ≈ 0.985) during the test. At the same time, the pressure drop across the 17-cm-high guard bed catalyst package linearly increases from 220 to 408 Pa due to the trapping of solid microparticles by the catalyst pellets. The theoretical estimate of the initial pressure drop (228 Pa) agrees with the test data (220 Pa) with fairly high accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
期刊最新文献
The Oxidative Chlorination of Hydrocarbons I: The Deacon Reaction. The Oxidative Chlorination of Saturated C1 and C2 Hydrocarbons The Oxidative Chlorination of Hydrocarbons II: The Oxidative Chlorination of Propylene, 1,3-Butadiene, Acetylene, and Benzene A Bifunctional Cobalt Catalyst for the Fischer–Tropsch Synthesis of Low Pour-Point Diesel Fuel, from Development to Implementation. Part 3: Experience from Creating an Industrial Technology of Preparation Preparing Hydroxylamine Sulfate via the Hydrogenation of NO on Pt/Graphite Catalysts III: Functionalizing the Surfaces of Supports and the Formation of the Active Component when Synthesizing the Catalyst Efficient Catalysts Based on Substitutional Solid Solutions and Palladium Intermetallic Compounds for the Selective Hydrogenation of Acetylene to Ethylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1