甲酸的异相催化脱氢制氢:综述

IF 0.7 Q4 ENGINEERING, CHEMICAL Catalysis in Industry Pub Date : 2024-09-18 DOI:10.1134/S2070050424700181
E. N. Voskresenskaya, V. M. Kirilets, O. P. Taran, B. N. Kuznetsov
{"title":"甲酸的异相催化脱氢制氢:综述","authors":"E. N. Voskresenskaya,&nbsp;V. M. Kirilets,&nbsp;O. P. Taran,&nbsp;B. N. Kuznetsov","doi":"10.1134/S2070050424700181","DOIUrl":null,"url":null,"abstract":"<p>The review discusses the latest advances in the study of heterogeneous metal-containing catalysts for the production of an environmentally friendly energy carrier—hydrogen—by the dehydrogenation of formic acid (FA), which is an available and low-toxic substance. Although the activity of homogeneous catalysts in the FA dehydrogenation reaction is higher than that of heterogeneous catalysts, the use of the latter makes it possible to simplify the technology and improve the environmental safety of hydrogen production from FA. An increase in the efficiency of heterogeneous FA dehydrogenation catalysts based on noble metals (Pd, Au, Ag) is achieved by developing novel methods for synthesizing monometallic, bimetallic, and trimetallic nanoparticles on various supports. The review compares the efficiency of various heterogeneous nanocatalysts in the FA dehydrogenation reaction and discusses various factors (metal nature, nanoperticle size and composition, support nature) that affect the activity and hydrogen selectivity of the catalysts. A significant increase in activity in the FA dehydrogenation reaction is achieved by intensifying the interaction of metal nanoparticles with the surface of a chemically modified support, which contributes to a decrease in the size of nanoparticles, an increase in the uniformity of their distribution on the support, and a change in the electronic state of the metal. Advances in the development of industrial heterogeneous catalysts for the production of pure hydrogen from FA will provide a significant contribution to the development of hydrogen power engineering.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"16 3","pages":"339 - 349"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Production by the Heterogeneous Catalytic Dehydrogenation of Formic Acid: A Review\",\"authors\":\"E. N. Voskresenskaya,&nbsp;V. M. Kirilets,&nbsp;O. P. Taran,&nbsp;B. N. Kuznetsov\",\"doi\":\"10.1134/S2070050424700181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The review discusses the latest advances in the study of heterogeneous metal-containing catalysts for the production of an environmentally friendly energy carrier—hydrogen—by the dehydrogenation of formic acid (FA), which is an available and low-toxic substance. Although the activity of homogeneous catalysts in the FA dehydrogenation reaction is higher than that of heterogeneous catalysts, the use of the latter makes it possible to simplify the technology and improve the environmental safety of hydrogen production from FA. An increase in the efficiency of heterogeneous FA dehydrogenation catalysts based on noble metals (Pd, Au, Ag) is achieved by developing novel methods for synthesizing monometallic, bimetallic, and trimetallic nanoparticles on various supports. The review compares the efficiency of various heterogeneous nanocatalysts in the FA dehydrogenation reaction and discusses various factors (metal nature, nanoperticle size and composition, support nature) that affect the activity and hydrogen selectivity of the catalysts. A significant increase in activity in the FA dehydrogenation reaction is achieved by intensifying the interaction of metal nanoparticles with the surface of a chemically modified support, which contributes to a decrease in the size of nanoparticles, an increase in the uniformity of their distribution on the support, and a change in the electronic state of the metal. Advances in the development of industrial heterogeneous catalysts for the production of pure hydrogen from FA will provide a significant contribution to the development of hydrogen power engineering.</p>\",\"PeriodicalId\":507,\"journal\":{\"name\":\"Catalysis in Industry\",\"volume\":\"16 3\",\"pages\":\"339 - 349\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis in Industry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2070050424700181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis in Industry","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2070050424700181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本综述讨论了通过甲酸(FA)脱氢生产环境友好型能源载体--氢的含金属异相催化剂研究的最新进展,甲酸是一种可获得的低毒物质。虽然均相催化剂在甲酸脱氢反应中的活性高于异相催化剂,但使用异相催化剂可以简化技术,提高甲酸制氢的环境安全性。通过开发在各种载体上合成单金属、双金属和三金属纳米颗粒的新方法,提高了基于贵金属(钯、金、银)的异相 FA 脱氢催化剂的效率。该综述比较了各种异质纳米催化剂在 FA 脱氢反应中的效率,并讨论了影响催化剂活性和氢选择性的各种因素(金属性质、纳米粒子尺寸和组成、载体性质)。通过加强金属纳米颗粒与化学修饰过的载体表面的相互作用,有助于减小纳米颗粒的尺寸、提高其在载体上分布的均匀性以及改变金属的电子状态,从而显著提高 FA 脱氢反应的活性。从 FA 生产纯氢的工业异相催化剂的开发进展将为氢能工程的发展做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrogen Production by the Heterogeneous Catalytic Dehydrogenation of Formic Acid: A Review

The review discusses the latest advances in the study of heterogeneous metal-containing catalysts for the production of an environmentally friendly energy carrier—hydrogen—by the dehydrogenation of formic acid (FA), which is an available and low-toxic substance. Although the activity of homogeneous catalysts in the FA dehydrogenation reaction is higher than that of heterogeneous catalysts, the use of the latter makes it possible to simplify the technology and improve the environmental safety of hydrogen production from FA. An increase in the efficiency of heterogeneous FA dehydrogenation catalysts based on noble metals (Pd, Au, Ag) is achieved by developing novel methods for synthesizing monometallic, bimetallic, and trimetallic nanoparticles on various supports. The review compares the efficiency of various heterogeneous nanocatalysts in the FA dehydrogenation reaction and discusses various factors (metal nature, nanoperticle size and composition, support nature) that affect the activity and hydrogen selectivity of the catalysts. A significant increase in activity in the FA dehydrogenation reaction is achieved by intensifying the interaction of metal nanoparticles with the surface of a chemically modified support, which contributes to a decrease in the size of nanoparticles, an increase in the uniformity of their distribution on the support, and a change in the electronic state of the metal. Advances in the development of industrial heterogeneous catalysts for the production of pure hydrogen from FA will provide a significant contribution to the development of hydrogen power engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Catalysis in Industry
Catalysis in Industry ENGINEERING, CHEMICAL-
CiteScore
1.30
自引率
14.30%
发文量
21
期刊介绍: The journal covers the following topical areas: Analysis of specific industrial catalytic processes: Production and use of catalysts in branches of industry: chemical, petrochemical, oil-refining, pharmaceutical, organic synthesis, fuel-energetic industries, environment protection, biocatalysis; technology of industrial catalytic processes (generalization of practical experience, improvements, and modernization); technology of catalysts production, raw materials and equipment; control of catalysts quality; starting, reduction, passivation, discharge, storage of catalysts; catalytic reactors.Theoretical foundations of industrial catalysis and technologies: Research, studies, and concepts : search for and development of new catalysts and new types of supports, formation of active components, and mechanochemistry in catalysis; comprehensive studies of work-out catalysts and analysis of deactivation mechanisms; studies of the catalytic process at different scale levels (laboratory, pilot plant, industrial); kinetics of industrial and newly developed catalytic processes and development of kinetic models; nonlinear dynamics and nonlinear phenomena in catalysis: multiplicity of stationary states, stepwise changes in regimes, etc. Advances in catalysis: Catalysis and gas chemistry; catalysis and new energy technologies; biocatalysis; nanocatalysis; catalysis and new construction materials.History of the development of industrial catalysis.
期刊最新文献
The Oxidative Chlorination of Hydrocarbons I: The Deacon Reaction. The Oxidative Chlorination of Saturated C1 and C2 Hydrocarbons The Oxidative Chlorination of Hydrocarbons II: The Oxidative Chlorination of Propylene, 1,3-Butadiene, Acetylene, and Benzene A Bifunctional Cobalt Catalyst for the Fischer–Tropsch Synthesis of Low Pour-Point Diesel Fuel, from Development to Implementation. Part 3: Experience from Creating an Industrial Technology of Preparation Preparing Hydroxylamine Sulfate via the Hydrogenation of NO on Pt/Graphite Catalysts III: Functionalizing the Surfaces of Supports and the Formation of the Active Component when Synthesizing the Catalyst Efficient Catalysts Based on Substitutional Solid Solutions and Palladium Intermetallic Compounds for the Selective Hydrogenation of Acetylene to Ethylene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1