中国海南岛土地利用/植被变化对土壤侵蚀的影响及未来模拟

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water Pub Date : 2024-09-18 DOI:10.3390/w16182654
Jianchao Guo, Jiadong Chen, Shi Qi
{"title":"中国海南岛土地利用/植被变化对土壤侵蚀的影响及未来模拟","authors":"Jianchao Guo, Jiadong Chen, Shi Qi","doi":"10.3390/w16182654","DOIUrl":null,"url":null,"abstract":"Soil erosion (SE) is a critical threat to the sustainable development of ecosystem stability, agricultural productivity, and human society in the context of global environmental and climate change. Particularly in tropical island regions, due to the expansion of human activities and land use/cover changes (LUCCs), the risk of SE has been exacerbated. Combining the RUSLE with machine learning methods, SE spatial patterns, their driving forces and the mechanisms of how LUCCs affect SE, were illustrated. Additionally, the potential impacts of future LUCCs on SE were simulated by using the PLUS model. The main results are as follows: (1) Due to LUCCs, the average soil erosion modulus (SEM) decreased significantly from 108.09 t/(km2·a) in 2000 to 106.75 t/(km2·a) in 2020, a reduction of 1.34 t/(km2·a), mainly due to the transformation of cropland to forest and urban land. (2) The dominant factor affecting the spatial pattern of SE is the LS factor (with relative contributions of 43.9% and 45.17%), followed by land use/cover (LUC) (the relative contribution is 28.46% and 34.89%) in 2000 and 2020, respectively. (3) Three kinds of future scenarios simulation results indicate that the average SEM will decrease by 2.40 t/(km2·a) under the natural development scenario and by 1.86 t/(km2·a) under the ecological protection scenario by 2060. However, under the cropland protection scenario, there is a slight increase in SEM, with an increase of 0.08 t/(km2·a). Sloping cropland erosion control remains a primary issue for Hainan Island in the future.","PeriodicalId":23788,"journal":{"name":"Water","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Land Use/Cover Change on Soil Erosion and Future Simulations in Hainan Island, China\",\"authors\":\"Jianchao Guo, Jiadong Chen, Shi Qi\",\"doi\":\"10.3390/w16182654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soil erosion (SE) is a critical threat to the sustainable development of ecosystem stability, agricultural productivity, and human society in the context of global environmental and climate change. Particularly in tropical island regions, due to the expansion of human activities and land use/cover changes (LUCCs), the risk of SE has been exacerbated. Combining the RUSLE with machine learning methods, SE spatial patterns, their driving forces and the mechanisms of how LUCCs affect SE, were illustrated. Additionally, the potential impacts of future LUCCs on SE were simulated by using the PLUS model. The main results are as follows: (1) Due to LUCCs, the average soil erosion modulus (SEM) decreased significantly from 108.09 t/(km2·a) in 2000 to 106.75 t/(km2·a) in 2020, a reduction of 1.34 t/(km2·a), mainly due to the transformation of cropland to forest and urban land. (2) The dominant factor affecting the spatial pattern of SE is the LS factor (with relative contributions of 43.9% and 45.17%), followed by land use/cover (LUC) (the relative contribution is 28.46% and 34.89%) in 2000 and 2020, respectively. (3) Three kinds of future scenarios simulation results indicate that the average SEM will decrease by 2.40 t/(km2·a) under the natural development scenario and by 1.86 t/(km2·a) under the ecological protection scenario by 2060. However, under the cropland protection scenario, there is a slight increase in SEM, with an increase of 0.08 t/(km2·a). Sloping cropland erosion control remains a primary issue for Hainan Island in the future.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16182654\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182654","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在全球环境和气候变化的背景下,土壤侵蚀(SE)对生态系统的稳定性、农业生产力和人类社会的可持续发展构成了严重威胁。特别是在热带岛屿地区,由于人类活动的扩张和土地利用/覆盖变化(LUCCs),水土流失的风险更加严重。结合 RUSLE 和机器学习方法,说明了 SE 空间模式、其驱动力以及 LUCCs 如何影响 SE 的机制。此外,还利用 PLUS 模型模拟了未来 LUCC 对 SE 的潜在影响。主要结果如下(1)由于 LUCCs,平均土壤侵蚀模数(SEM)从 2000 年的 108.09 吨/(km2-a)显著下降到 2020 年的 106.75 吨/(km2-a),减少了 1.34 吨/(km2-a),这主要是由于耕地向林地和城市用地的转变。(2) 2000 年和 2020 年,影响 SE 空间格局的主导因素是 LS 因素(相对贡献率分别为 43.9% 和 45.17%),其次是土地利用/覆盖(LUC)(相对贡献率分别为 28.46% 和 34.89%)。(3)三种未来情景模拟结果表明,到 2060 年,在自然发展情景下,平均 SEM 将减少 2.40 吨/(km2-a),在生态保护情景下,平均 SEM 将减少 1.86 吨/(km2-a)。然而,在耕地保护情景下,SEM 会略有增加,增加 0.08 吨/(平方公里-a)。坡耕地水土流失控制仍是海南岛未来的首要问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Land Use/Cover Change on Soil Erosion and Future Simulations in Hainan Island, China
Soil erosion (SE) is a critical threat to the sustainable development of ecosystem stability, agricultural productivity, and human society in the context of global environmental and climate change. Particularly in tropical island regions, due to the expansion of human activities and land use/cover changes (LUCCs), the risk of SE has been exacerbated. Combining the RUSLE with machine learning methods, SE spatial patterns, their driving forces and the mechanisms of how LUCCs affect SE, were illustrated. Additionally, the potential impacts of future LUCCs on SE were simulated by using the PLUS model. The main results are as follows: (1) Due to LUCCs, the average soil erosion modulus (SEM) decreased significantly from 108.09 t/(km2·a) in 2000 to 106.75 t/(km2·a) in 2020, a reduction of 1.34 t/(km2·a), mainly due to the transformation of cropland to forest and urban land. (2) The dominant factor affecting the spatial pattern of SE is the LS factor (with relative contributions of 43.9% and 45.17%), followed by land use/cover (LUC) (the relative contribution is 28.46% and 34.89%) in 2000 and 2020, respectively. (3) Three kinds of future scenarios simulation results indicate that the average SEM will decrease by 2.40 t/(km2·a) under the natural development scenario and by 1.86 t/(km2·a) under the ecological protection scenario by 2060. However, under the cropland protection scenario, there is a slight increase in SEM, with an increase of 0.08 t/(km2·a). Sloping cropland erosion control remains a primary issue for Hainan Island in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water
Water WATER RESOURCES-
CiteScore
5.80
自引率
14.70%
发文量
3491
审稿时长
19.85 days
期刊介绍: Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
期刊最新文献
Study on Large-Scale Urban Water Distribution Network Computation Method Based on a GPU Framework Land-Use Pattern-Based Spatial Variation of Physicochemical Parameters and Efficacy of Safe Drinking Water Supply along the Mahaweli River, Sri Lanka Ensuring the Safety of an Extraction Well from an Upgradient Point Source of Pollution in a Computationally Constrained Setting The Impact of Catastrophic Floods on Macroinvertebrate Communities in Low-Order Streams: A Study from the Apennines (Northwest Italy) Characterization of Wastewater in an Activated Sludge Treatment Plant of the Food Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1