Christian Herrera, Javier Urrutia, Linda Godfrey, Jorge Jódar, Mario Pereira, Constanza Villarroel, Camila Durán, Ivan Soto, Elizabeth J. Lam, Luis Gómez
{"title":"通过对 δ18O 和 δ2H 的同位素研究评估(智利)阿塔卡马盐湖海绿石核上部的盐水流","authors":"Christian Herrera, Javier Urrutia, Linda Godfrey, Jorge Jódar, Mario Pereira, Constanza Villarroel, Camila Durán, Ivan Soto, Elizabeth J. Lam, Luis Gómez","doi":"10.3390/w16182651","DOIUrl":null,"url":null,"abstract":"A hydrogeological study of the shallowest part of the halite nucleus of the Salar de Atacama is presented, focusing on the isotopic variability in δ18O and δ2H (SMOW) in the brine. It is observed that intensive brine extraction has induced upward vertical flows from the lower aquifer, which presents with a lighter isotopic composition (δ18O: −0.87‰ to −2.49‰; δ2H: −26.04‰ to −33.25‰), toward the upper aquifer, which has more variable and enriched isotopic values. Among the possible explanations for the lighter isotopic composition of the lower aquifer waters is the influence of paleolakes formed during the wetter periods of the Late Pleistocene and Holocene that recharged the underlying aquifers. The geological structure of the Salar, including faults and the distribution of low-permeability layers, has played a determining role in the system’s hydrodynamics. This study emphasizes the need for continuous and detailed monitoring of the isotopic composition to assess the sustainability of the water resource in response to brine extraction and future climate changes. Additionally, it suggests applying this methodology to other salt flats in the region for a better understanding of hydrogeological processes in arid zones. The research provides an integrative view of the relationship between resource extraction, water management, and ecosystem conservation in one of the most important salars in the world.","PeriodicalId":23788,"journal":{"name":"Water","volume":"12 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Evaluation of the Brine Flow in the Upper Part of the Halite Nucleus of the Salar de Atacama (Chile) through an Isotopic Study of δ18O and δ2H\",\"authors\":\"Christian Herrera, Javier Urrutia, Linda Godfrey, Jorge Jódar, Mario Pereira, Constanza Villarroel, Camila Durán, Ivan Soto, Elizabeth J. Lam, Luis Gómez\",\"doi\":\"10.3390/w16182651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hydrogeological study of the shallowest part of the halite nucleus of the Salar de Atacama is presented, focusing on the isotopic variability in δ18O and δ2H (SMOW) in the brine. It is observed that intensive brine extraction has induced upward vertical flows from the lower aquifer, which presents with a lighter isotopic composition (δ18O: −0.87‰ to −2.49‰; δ2H: −26.04‰ to −33.25‰), toward the upper aquifer, which has more variable and enriched isotopic values. Among the possible explanations for the lighter isotopic composition of the lower aquifer waters is the influence of paleolakes formed during the wetter periods of the Late Pleistocene and Holocene that recharged the underlying aquifers. The geological structure of the Salar, including faults and the distribution of low-permeability layers, has played a determining role in the system’s hydrodynamics. This study emphasizes the need for continuous and detailed monitoring of the isotopic composition to assess the sustainability of the water resource in response to brine extraction and future climate changes. Additionally, it suggests applying this methodology to other salt flats in the region for a better understanding of hydrogeological processes in arid zones. The research provides an integrative view of the relationship between resource extraction, water management, and ecosystem conservation in one of the most important salars in the world.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16182651\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182651","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
An Evaluation of the Brine Flow in the Upper Part of the Halite Nucleus of the Salar de Atacama (Chile) through an Isotopic Study of δ18O and δ2H
A hydrogeological study of the shallowest part of the halite nucleus of the Salar de Atacama is presented, focusing on the isotopic variability in δ18O and δ2H (SMOW) in the brine. It is observed that intensive brine extraction has induced upward vertical flows from the lower aquifer, which presents with a lighter isotopic composition (δ18O: −0.87‰ to −2.49‰; δ2H: −26.04‰ to −33.25‰), toward the upper aquifer, which has more variable and enriched isotopic values. Among the possible explanations for the lighter isotopic composition of the lower aquifer waters is the influence of paleolakes formed during the wetter periods of the Late Pleistocene and Holocene that recharged the underlying aquifers. The geological structure of the Salar, including faults and the distribution of low-permeability layers, has played a determining role in the system’s hydrodynamics. This study emphasizes the need for continuous and detailed monitoring of the isotopic composition to assess the sustainability of the water resource in response to brine extraction and future climate changes. Additionally, it suggests applying this methodology to other salt flats in the region for a better understanding of hydrogeological processes in arid zones. The research provides an integrative view of the relationship between resource extraction, water management, and ecosystem conservation in one of the most important salars in the world.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.