Houyu Zhang, Yingbo Guan, Zilong Hu, Weilong Guang, Di Zhu, Ran Tao, Ruofu Xiao
{"title":"用变量模式分解分析和识别轴流叶轮的偏心率","authors":"Houyu Zhang, Yingbo Guan, Zilong Hu, Weilong Guang, Di Zhu, Ran Tao, Ruofu Xiao","doi":"10.3390/w16182605","DOIUrl":null,"url":null,"abstract":"The axial-flow impellers are widely applied to industry due to their excellent hydraulic performance and simple structure, but they may be affected by their eccentricity during operation. This study compared and studied the effects of the axial-flow eccentricity of an impeller on hydraulic performance, impeller radial force, and downstream pressure pulsation of the unit. The research results indicate that impeller eccentricity has a small effect on hydraulic performance. Compared with the design conditions, the efficiency, power, and head changes caused by impeller eccentricity are all less than 1%, but the impeller eccentricity leads to a sharp increase in the radial force of the impeller. Under the design conditions, the average value of the radial force of the impeller is 31.38 N; under eccentric conditions, the average value of the radial force of the impeller increased by nine times, reaching 316.30 N. By analyzing the pressure pulsation signals decomposed by the VMD method, it is shown that the influence of eccentricity on pressure pulsation is mainly reflected in the increase in impeller frequency on pressure pulsation. Under design conditions, the corresponding amplitude of the impeller frequency is 2.6; under eccentric conditions, the amplitude corresponding to the impeller frequency increased by 100 times, reaching 274.4. This study elucidates the specific effects of axial impeller eccentricity, providing theoretical guidance for the safe and stable operation of axial-flow units, and has important engineering significance.","PeriodicalId":23788,"journal":{"name":"Water","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and Identification of Eccentricity of Axial-Flow Impeller by Variational Mode Decomposition\",\"authors\":\"Houyu Zhang, Yingbo Guan, Zilong Hu, Weilong Guang, Di Zhu, Ran Tao, Ruofu Xiao\",\"doi\":\"10.3390/w16182605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The axial-flow impellers are widely applied to industry due to their excellent hydraulic performance and simple structure, but they may be affected by their eccentricity during operation. This study compared and studied the effects of the axial-flow eccentricity of an impeller on hydraulic performance, impeller radial force, and downstream pressure pulsation of the unit. The research results indicate that impeller eccentricity has a small effect on hydraulic performance. Compared with the design conditions, the efficiency, power, and head changes caused by impeller eccentricity are all less than 1%, but the impeller eccentricity leads to a sharp increase in the radial force of the impeller. Under the design conditions, the average value of the radial force of the impeller is 31.38 N; under eccentric conditions, the average value of the radial force of the impeller increased by nine times, reaching 316.30 N. By analyzing the pressure pulsation signals decomposed by the VMD method, it is shown that the influence of eccentricity on pressure pulsation is mainly reflected in the increase in impeller frequency on pressure pulsation. Under design conditions, the corresponding amplitude of the impeller frequency is 2.6; under eccentric conditions, the amplitude corresponding to the impeller frequency increased by 100 times, reaching 274.4. This study elucidates the specific effects of axial impeller eccentricity, providing theoretical guidance for the safe and stable operation of axial-flow units, and has important engineering significance.\",\"PeriodicalId\":23788,\"journal\":{\"name\":\"Water\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3390/w16182605\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/w16182605","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Analysis and Identification of Eccentricity of Axial-Flow Impeller by Variational Mode Decomposition
The axial-flow impellers are widely applied to industry due to their excellent hydraulic performance and simple structure, but they may be affected by their eccentricity during operation. This study compared and studied the effects of the axial-flow eccentricity of an impeller on hydraulic performance, impeller radial force, and downstream pressure pulsation of the unit. The research results indicate that impeller eccentricity has a small effect on hydraulic performance. Compared with the design conditions, the efficiency, power, and head changes caused by impeller eccentricity are all less than 1%, but the impeller eccentricity leads to a sharp increase in the radial force of the impeller. Under the design conditions, the average value of the radial force of the impeller is 31.38 N; under eccentric conditions, the average value of the radial force of the impeller increased by nine times, reaching 316.30 N. By analyzing the pressure pulsation signals decomposed by the VMD method, it is shown that the influence of eccentricity on pressure pulsation is mainly reflected in the increase in impeller frequency on pressure pulsation. Under design conditions, the corresponding amplitude of the impeller frequency is 2.6; under eccentric conditions, the amplitude corresponding to the impeller frequency increased by 100 times, reaching 274.4. This study elucidates the specific effects of axial impeller eccentricity, providing theoretical guidance for the safe and stable operation of axial-flow units, and has important engineering significance.
期刊介绍:
Water (ISSN 2073-4441) is an international and cross-disciplinary scholarly journal covering all aspects of water including water science and technology, and the hydrology, ecology and management of water resources. It publishes regular research papers, critical reviews and short communications, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.