{"title":"解密 FOXP4 在长 COVID 中的作用:通过生物信息学分析探索遗传关联、进化保护和药物鉴定","authors":"Manoj Kumar Gupta, Gayatri Gouda, Ramakrishna Vadde","doi":"10.1007/s10142-024-01451-7","DOIUrl":null,"url":null,"abstract":"<div><p>Long COVID (LC) refers to a condition characterized by a variety of lingering symptoms that persist for more than 4 to 12 weeks following the initial acute SARS-CoV-2 infection. Recent research has suggested that the <i>FOXP4</i> gene could potentially be a significant factor contributing to LC. Owing to that, this study investigates <i>FOXP4</i>’s role in LC by analyzing public datasets to understand its evolution and expression in diverse human populations and searching for drugs to reduce LC symptoms. Population genetic analysis of <i>FOXP4</i> across human populations unmasks distinct genetic diversity patterns and positive selection signatures, suggesting potential population-specific susceptibilities to conditions like LC. Further, we also observed that <i>FOXP4</i> experiences high expression during LC. To identify potential inhibitors, drug screening analysis identifies synthetic drugs like Glisoxepide, and natural compounds Kapurimycin A3 produced from <i>Streptomyces sp</i>, and Cucurbitacin B from <i>Begonia nantoensis</i> as promising candidates. Overall, our research contributes to understanding how<i> FOXP4</i> may serve as a therapeutic target for mitigating the impact of LC.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the role of FOXP4 in long COVID: exploring genetic associations, evolutionary conservation, and drug identification through bioinformatics analysis\",\"authors\":\"Manoj Kumar Gupta, Gayatri Gouda, Ramakrishna Vadde\",\"doi\":\"10.1007/s10142-024-01451-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Long COVID (LC) refers to a condition characterized by a variety of lingering symptoms that persist for more than 4 to 12 weeks following the initial acute SARS-CoV-2 infection. Recent research has suggested that the <i>FOXP4</i> gene could potentially be a significant factor contributing to LC. Owing to that, this study investigates <i>FOXP4</i>’s role in LC by analyzing public datasets to understand its evolution and expression in diverse human populations and searching for drugs to reduce LC symptoms. Population genetic analysis of <i>FOXP4</i> across human populations unmasks distinct genetic diversity patterns and positive selection signatures, suggesting potential population-specific susceptibilities to conditions like LC. Further, we also observed that <i>FOXP4</i> experiences high expression during LC. To identify potential inhibitors, drug screening analysis identifies synthetic drugs like Glisoxepide, and natural compounds Kapurimycin A3 produced from <i>Streptomyces sp</i>, and Cucurbitacin B from <i>Begonia nantoensis</i> as promising candidates. Overall, our research contributes to understanding how<i> FOXP4</i> may serve as a therapeutic target for mitigating the impact of LC.</p></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-024-01451-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01451-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Deciphering the role of FOXP4 in long COVID: exploring genetic associations, evolutionary conservation, and drug identification through bioinformatics analysis
Long COVID (LC) refers to a condition characterized by a variety of lingering symptoms that persist for more than 4 to 12 weeks following the initial acute SARS-CoV-2 infection. Recent research has suggested that the FOXP4 gene could potentially be a significant factor contributing to LC. Owing to that, this study investigates FOXP4’s role in LC by analyzing public datasets to understand its evolution and expression in diverse human populations and searching for drugs to reduce LC symptoms. Population genetic analysis of FOXP4 across human populations unmasks distinct genetic diversity patterns and positive selection signatures, suggesting potential population-specific susceptibilities to conditions like LC. Further, we also observed that FOXP4 experiences high expression during LC. To identify potential inhibitors, drug screening analysis identifies synthetic drugs like Glisoxepide, and natural compounds Kapurimycin A3 produced from Streptomyces sp, and Cucurbitacin B from Begonia nantoensis as promising candidates. Overall, our research contributes to understanding how FOXP4 may serve as a therapeutic target for mitigating the impact of LC.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?