Yu Fan, Po Wang, Changchun Jiang, Jinyu Chen, Meili Zhao, Jiahui Liu
{"title":"在帕金森病大鼠模型中,Tet1 通过 Trpv1 DNA 羟甲基化介导的 Ampk 信号激活具有神经保护作用","authors":"Yu Fan, Po Wang, Changchun Jiang, Jinyu Chen, Meili Zhao, Jiahui Liu","doi":"10.1007/s10142-024-01446-4","DOIUrl":null,"url":null,"abstract":"<div><p>Epigenetic regulation plays a role in Parkinson’s disease (PD), and ten-eleven translocation methylcytosine dioxygenase 1 (TET1) catalyzes the first step in DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine. We investigated whether TET1 binds to the promoter of the transient receptor potential cation channel subfamily V member 1 (TRPV1) and regulates its expression, thereby controlling oxidative stress in PD. TRPV1 was identified as an oxidative stress-associated gene in the GSE20186 dataset including substantia nigra from 14 patients with PD and 14 healthy controls and the Genecards database. Lentiviral vectors were used to manipulate Trpv1 expression in rats, followed by 6-hydroxydopamine hydrochloride (6-OHDA) injection for modeling. Behavioral tests, immunofluorescence, Nissl staining, western blot assays, DHE fluorescent probe, biochemical analysis, and ELISA were conducted to assess oxidative stress and neurotoxicity. Trpv1 expression was significantly reduced in the brain tissues of 6-OHDA-treated Parkinsonian rats. Trpv1 alleviated behavioral dysfunction, oxidative stress, and dopamine neuron loss in rats. TET1 mediated TRPV1 hydroxymethylation to promote its expression, and Trpv1 inhibition reversed the mitigating effect of Tet1 on oxidative stress and behavioral dysfunction in PD. TRPV1 activated the AMPK signaling by promoting AMPK phosphorylation to alleviate neurotoxicity and oxidative stress in SH-SY5Y cells. Tet1-mediated Trpv1 hydroxymethylation modification promotes the Ampk signaling activation, thereby eliciting neuroprotection in 6-OHDA-treated Parkinsonian rats. These findings provide experimental evidence that targeting the TET1/TRPV1 axis may be neuroprotective for PD by acting on the AMPK signaling.</p></div>","PeriodicalId":574,"journal":{"name":"Functional & Integrative Genomics","volume":"24 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tet1-mediated activation of the Ampk signaling by Trpv1 DNA hydroxymethylation exerts neuroprotective effects in a rat model of Parkinson’s disease\",\"authors\":\"Yu Fan, Po Wang, Changchun Jiang, Jinyu Chen, Meili Zhao, Jiahui Liu\",\"doi\":\"10.1007/s10142-024-01446-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epigenetic regulation plays a role in Parkinson’s disease (PD), and ten-eleven translocation methylcytosine dioxygenase 1 (TET1) catalyzes the first step in DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine. We investigated whether TET1 binds to the promoter of the transient receptor potential cation channel subfamily V member 1 (TRPV1) and regulates its expression, thereby controlling oxidative stress in PD. TRPV1 was identified as an oxidative stress-associated gene in the GSE20186 dataset including substantia nigra from 14 patients with PD and 14 healthy controls and the Genecards database. Lentiviral vectors were used to manipulate Trpv1 expression in rats, followed by 6-hydroxydopamine hydrochloride (6-OHDA) injection for modeling. Behavioral tests, immunofluorescence, Nissl staining, western blot assays, DHE fluorescent probe, biochemical analysis, and ELISA were conducted to assess oxidative stress and neurotoxicity. Trpv1 expression was significantly reduced in the brain tissues of 6-OHDA-treated Parkinsonian rats. Trpv1 alleviated behavioral dysfunction, oxidative stress, and dopamine neuron loss in rats. TET1 mediated TRPV1 hydroxymethylation to promote its expression, and Trpv1 inhibition reversed the mitigating effect of Tet1 on oxidative stress and behavioral dysfunction in PD. TRPV1 activated the AMPK signaling by promoting AMPK phosphorylation to alleviate neurotoxicity and oxidative stress in SH-SY5Y cells. Tet1-mediated Trpv1 hydroxymethylation modification promotes the Ampk signaling activation, thereby eliciting neuroprotection in 6-OHDA-treated Parkinsonian rats. These findings provide experimental evidence that targeting the TET1/TRPV1 axis may be neuroprotective for PD by acting on the AMPK signaling.</p></div>\",\"PeriodicalId\":574,\"journal\":{\"name\":\"Functional & Integrative Genomics\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional & Integrative Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10142-024-01446-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional & Integrative Genomics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10142-024-01446-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Tet1-mediated activation of the Ampk signaling by Trpv1 DNA hydroxymethylation exerts neuroprotective effects in a rat model of Parkinson’s disease
Epigenetic regulation plays a role in Parkinson’s disease (PD), and ten-eleven translocation methylcytosine dioxygenase 1 (TET1) catalyzes the first step in DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine. We investigated whether TET1 binds to the promoter of the transient receptor potential cation channel subfamily V member 1 (TRPV1) and regulates its expression, thereby controlling oxidative stress in PD. TRPV1 was identified as an oxidative stress-associated gene in the GSE20186 dataset including substantia nigra from 14 patients with PD and 14 healthy controls and the Genecards database. Lentiviral vectors were used to manipulate Trpv1 expression in rats, followed by 6-hydroxydopamine hydrochloride (6-OHDA) injection for modeling. Behavioral tests, immunofluorescence, Nissl staining, western blot assays, DHE fluorescent probe, biochemical analysis, and ELISA were conducted to assess oxidative stress and neurotoxicity. Trpv1 expression was significantly reduced in the brain tissues of 6-OHDA-treated Parkinsonian rats. Trpv1 alleviated behavioral dysfunction, oxidative stress, and dopamine neuron loss in rats. TET1 mediated TRPV1 hydroxymethylation to promote its expression, and Trpv1 inhibition reversed the mitigating effect of Tet1 on oxidative stress and behavioral dysfunction in PD. TRPV1 activated the AMPK signaling by promoting AMPK phosphorylation to alleviate neurotoxicity and oxidative stress in SH-SY5Y cells. Tet1-mediated Trpv1 hydroxymethylation modification promotes the Ampk signaling activation, thereby eliciting neuroprotection in 6-OHDA-treated Parkinsonian rats. These findings provide experimental evidence that targeting the TET1/TRPV1 axis may be neuroprotective for PD by acting on the AMPK signaling.
期刊介绍:
Functional & Integrative Genomics is devoted to large-scale studies of genomes and their functions, including systems analyses of biological processes. The journal will provide the research community an integrated platform where researchers can share, review and discuss their findings on important biological questions that will ultimately enable us to answer the fundamental question: How do genomes work?