多维点的快速自适应批量加载

Moin Hussain Moti, Dimitris Papadias
{"title":"多维点的快速自适应批量加载","authors":"Moin Hussain Moti, Dimitris Papadias","doi":"arxiv-2409.09447","DOIUrl":null,"url":null,"abstract":"Existing methods for bulk loading disk-based multidimensional points involve\nmultiple applications of external sorting. In this paper, we propose techniques\nthat apply linear scan, and are therefore significantly faster. The resulting\nFMBI Index possesses several desirable properties, including almost full and\nsquare nodes with zero overlap, and has excellent query performance. As a\nsecond contribution, we develop an adaptive version AMBI, which utilizes the\nquery workload to build a partial index only for parts of the data space that\ncontain query results. Finally, we extend FMBI and AMBI to parallel bulk\nloading and query processing in distributed systems. An extensive experimental\nevaluation with real datasets confirms that FMBI and AMBI clearly outperform\ncompetitors in terms of combined index construction and query processing cost,\nsometimes by orders of magnitude.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and Adaptive Bulk Loading of Multidimensional Points\",\"authors\":\"Moin Hussain Moti, Dimitris Papadias\",\"doi\":\"arxiv-2409.09447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing methods for bulk loading disk-based multidimensional points involve\\nmultiple applications of external sorting. In this paper, we propose techniques\\nthat apply linear scan, and are therefore significantly faster. The resulting\\nFMBI Index possesses several desirable properties, including almost full and\\nsquare nodes with zero overlap, and has excellent query performance. As a\\nsecond contribution, we develop an adaptive version AMBI, which utilizes the\\nquery workload to build a partial index only for parts of the data space that\\ncontain query results. Finally, we extend FMBI and AMBI to parallel bulk\\nloading and query processing in distributed systems. An extensive experimental\\nevaluation with real datasets confirms that FMBI and AMBI clearly outperform\\ncompetitors in terms of combined index construction and query processing cost,\\nsometimes by orders of magnitude.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的基于磁盘的多维点批量加载方法涉及多种外部排序应用。在本文中,我们提出了应用线性扫描的技术,因此速度明显更快。由此产生的 FMBI 索引具有几个理想的特性,包括几乎全节点和零重叠的方形节点,并具有出色的查询性能。作为第二个贡献,我们开发了一个自适应版本 AMBI,它利用查询工作量只为包含查询结果的数据空间部分建立部分索引。最后,我们将 FMBI 和 AMBI 扩展到分布式系统中的并行批量加载和查询处理。利用真实数据集进行的广泛实验评估证实,FMBI 和 AMBI 在综合索引构建和查询处理成本方面明显优于竞争对手,有时甚至超出几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast and Adaptive Bulk Loading of Multidimensional Points
Existing methods for bulk loading disk-based multidimensional points involve multiple applications of external sorting. In this paper, we propose techniques that apply linear scan, and are therefore significantly faster. The resulting FMBI Index possesses several desirable properties, including almost full and square nodes with zero overlap, and has excellent query performance. As a second contribution, we develop an adaptive version AMBI, which utilizes the query workload to build a partial index only for parts of the data space that contain query results. Finally, we extend FMBI and AMBI to parallel bulk loading and query processing in distributed systems. An extensive experimental evaluation with real datasets confirms that FMBI and AMBI clearly outperform competitors in terms of combined index construction and query processing cost, sometimes by orders of magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1