Laura E Quintero-Martínez,Adrian Canizalez-Roman,Uriel A Angulo-Zamudio,Hector Flores-Villaseñor,Jorge A Velazquez-Roman,Jan G M Bolscher,Kamran Nazmi,Nidia Leon-Sicairos
{"title":"牛乳铁蛋白和嵌合体乳铁蛋白可防止和破坏 Caco-2 细胞中的鼠伤寒沙门氏菌生物膜。","authors":"Laura E Quintero-Martínez,Adrian Canizalez-Roman,Uriel A Angulo-Zamudio,Hector Flores-Villaseñor,Jorge A Velazquez-Roman,Jan G M Bolscher,Kamran Nazmi,Nidia Leon-Sicairos","doi":"10.1139/bcb-2024-0100","DOIUrl":null,"url":null,"abstract":"Salmonellosis is a common foodborne disease caused by Salmonella bacteria. The emergence of multidrug-resistant (MDR) Salmonella serotypes, such as Typhimurium, and Salmonella's ability to form biofilms contribute to their resistance and persistence in host and non-host environments. New strategies are needed to treat or prevent Salmonella infections. This work aimed to determine the effect of the bovine lactoferrin (bLF) and lactoferrin chimera (LFchimera) in preventing or disrupting biofilms formed on abiotic surfaces or Caco-2 cells by Salmonella Typhimurium ATCC 14028 or an MDR strain. The inhibitory activity of planktonic bacteria, prevention of biofilm formation, and destruction of biofilms of S. Typhimurium (ATCC 14028 or MDR strain) on the abiotic surface and Caco-2 cells of bLF and LFchimera were quantified by CFU/ml and visualized by microscopy using Giemsa-stained samples. bLF (75-1000µM) and LFchimera (1-20µM) inhibited more than 95% of S. Typhimurium planktonic growth cultures (ATCC 14028 and MDR). In addition, bLF (600, 800, and 1000 µM) and LFchimera (10 and 20µM) prevented more than 98% of S. Typhimurium adherence and biofilm formation on Caco-2 cells. Finally, bLF (600 and 1000 µM) and LFchimera (10 and 20µM) destroyed more than 80% of S. Typhimurium biofilms established on abiotic and Caco-2 cells. In conclusion, bLF and LF chimeras have the potential to inhibit and destroy S. Typhimurium biofilms.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bovine lactoferrin and chimera lactoferrin prevent and destroy Salmonella Typhimurium biofilms in Caco-2 cells.\",\"authors\":\"Laura E Quintero-Martínez,Adrian Canizalez-Roman,Uriel A Angulo-Zamudio,Hector Flores-Villaseñor,Jorge A Velazquez-Roman,Jan G M Bolscher,Kamran Nazmi,Nidia Leon-Sicairos\",\"doi\":\"10.1139/bcb-2024-0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salmonellosis is a common foodborne disease caused by Salmonella bacteria. The emergence of multidrug-resistant (MDR) Salmonella serotypes, such as Typhimurium, and Salmonella's ability to form biofilms contribute to their resistance and persistence in host and non-host environments. New strategies are needed to treat or prevent Salmonella infections. This work aimed to determine the effect of the bovine lactoferrin (bLF) and lactoferrin chimera (LFchimera) in preventing or disrupting biofilms formed on abiotic surfaces or Caco-2 cells by Salmonella Typhimurium ATCC 14028 or an MDR strain. The inhibitory activity of planktonic bacteria, prevention of biofilm formation, and destruction of biofilms of S. Typhimurium (ATCC 14028 or MDR strain) on the abiotic surface and Caco-2 cells of bLF and LFchimera were quantified by CFU/ml and visualized by microscopy using Giemsa-stained samples. bLF (75-1000µM) and LFchimera (1-20µM) inhibited more than 95% of S. Typhimurium planktonic growth cultures (ATCC 14028 and MDR). In addition, bLF (600, 800, and 1000 µM) and LFchimera (10 and 20µM) prevented more than 98% of S. Typhimurium adherence and biofilm formation on Caco-2 cells. Finally, bLF (600 and 1000 µM) and LFchimera (10 and 20µM) destroyed more than 80% of S. Typhimurium biofilms established on abiotic and Caco-2 cells. In conclusion, bLF and LF chimeras have the potential to inhibit and destroy S. Typhimurium biofilms.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2024-0100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1139/bcb-2024-0100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Bovine lactoferrin and chimera lactoferrin prevent and destroy Salmonella Typhimurium biofilms in Caco-2 cells.
Salmonellosis is a common foodborne disease caused by Salmonella bacteria. The emergence of multidrug-resistant (MDR) Salmonella serotypes, such as Typhimurium, and Salmonella's ability to form biofilms contribute to their resistance and persistence in host and non-host environments. New strategies are needed to treat or prevent Salmonella infections. This work aimed to determine the effect of the bovine lactoferrin (bLF) and lactoferrin chimera (LFchimera) in preventing or disrupting biofilms formed on abiotic surfaces or Caco-2 cells by Salmonella Typhimurium ATCC 14028 or an MDR strain. The inhibitory activity of planktonic bacteria, prevention of biofilm formation, and destruction of biofilms of S. Typhimurium (ATCC 14028 or MDR strain) on the abiotic surface and Caco-2 cells of bLF and LFchimera were quantified by CFU/ml and visualized by microscopy using Giemsa-stained samples. bLF (75-1000µM) and LFchimera (1-20µM) inhibited more than 95% of S. Typhimurium planktonic growth cultures (ATCC 14028 and MDR). In addition, bLF (600, 800, and 1000 µM) and LFchimera (10 and 20µM) prevented more than 98% of S. Typhimurium adherence and biofilm formation on Caco-2 cells. Finally, bLF (600 and 1000 µM) and LFchimera (10 and 20µM) destroyed more than 80% of S. Typhimurium biofilms established on abiotic and Caco-2 cells. In conclusion, bLF and LF chimeras have the potential to inhibit and destroy S. Typhimurium biofilms.