Marlon Schlemminger, Dennis Bredemeier, Alexander Mahner, Raphael Niepelt, Michael H. Breitner, Rolf Brendel
{"title":"通过反向光线追踪确定屋顶光伏发电潜力:德国柏林、科隆和汉诺威地区案例研究","authors":"Marlon Schlemminger, Dennis Bredemeier, Alexander Mahner, Raphael Niepelt, Michael H. Breitner, Rolf Brendel","doi":"10.1002/pip.3844","DOIUrl":null,"url":null,"abstract":"<p>Photovoltaics (PV) on building rooftops is a major contributor to the decarbonization of energy systems. We simulate the PV energy yield potential for 2.5 million individual roofs in three German regions. We cumulate the results for each single roof to calculate the cost-potential curves for the three cities Berlin, Cologne, and Hanover. These curves give the amount of electricity that can be generated at less than a given cost per kWh. We find that these curves have the shape of a hockey stick. Neglecting the dependence of PV investment on building size and thus on the system sizes causes largely different cost-potential curves that differ by 11%–18% for flat roofs due to their heterogeneous building size distribution. The cost-potential curves of the three cities are very similar when appropriately normalized, for example, by the local solar irradiation and the settlement area of the city, despite substantial variations in population density. This allows for an extrapolation of our results. For Germany, we reveal an upper limit for the total electricity generation from rooftop PV of 762 TWh/a with cost as low as 6.9 ct/kWh without accounting for area losses due to chimneys, air conditioning systems, and so forth. We estimate the actual potential to be at least half of that figure.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 12","pages":"912-929"},"PeriodicalIF":8.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3844","citationCount":"0","resultStr":"{\"title\":\"Rooftop PV Potential Determined by Backward Ray Tracing: A Case Study for the German Regions of Berlin, Cologne, and Hanover\",\"authors\":\"Marlon Schlemminger, Dennis Bredemeier, Alexander Mahner, Raphael Niepelt, Michael H. Breitner, Rolf Brendel\",\"doi\":\"10.1002/pip.3844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photovoltaics (PV) on building rooftops is a major contributor to the decarbonization of energy systems. We simulate the PV energy yield potential for 2.5 million individual roofs in three German regions. We cumulate the results for each single roof to calculate the cost-potential curves for the three cities Berlin, Cologne, and Hanover. These curves give the amount of electricity that can be generated at less than a given cost per kWh. We find that these curves have the shape of a hockey stick. Neglecting the dependence of PV investment on building size and thus on the system sizes causes largely different cost-potential curves that differ by 11%–18% for flat roofs due to their heterogeneous building size distribution. The cost-potential curves of the three cities are very similar when appropriately normalized, for example, by the local solar irradiation and the settlement area of the city, despite substantial variations in population density. This allows for an extrapolation of our results. For Germany, we reveal an upper limit for the total electricity generation from rooftop PV of 762 TWh/a with cost as low as 6.9 ct/kWh without accounting for area losses due to chimneys, air conditioning systems, and so forth. We estimate the actual potential to be at least half of that figure.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 12\",\"pages\":\"912-929\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3844\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3844\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3844","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Rooftop PV Potential Determined by Backward Ray Tracing: A Case Study for the German Regions of Berlin, Cologne, and Hanover
Photovoltaics (PV) on building rooftops is a major contributor to the decarbonization of energy systems. We simulate the PV energy yield potential for 2.5 million individual roofs in three German regions. We cumulate the results for each single roof to calculate the cost-potential curves for the three cities Berlin, Cologne, and Hanover. These curves give the amount of electricity that can be generated at less than a given cost per kWh. We find that these curves have the shape of a hockey stick. Neglecting the dependence of PV investment on building size and thus on the system sizes causes largely different cost-potential curves that differ by 11%–18% for flat roofs due to their heterogeneous building size distribution. The cost-potential curves of the three cities are very similar when appropriately normalized, for example, by the local solar irradiation and the settlement area of the city, despite substantial variations in population density. This allows for an extrapolation of our results. For Germany, we reveal an upper limit for the total electricity generation from rooftop PV of 762 TWh/a with cost as low as 6.9 ct/kWh without accounting for area losses due to chimneys, air conditioning systems, and so forth. We estimate the actual potential to be at least half of that figure.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.