为深度神经网络加速器自动生成快速准确的性能模型

Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, Mika Markus Müller, Federico Nicolás Peccia, Felix Thömmes, Jannik Steinmetz, Valentin Biermaier, Adrian Frischknecht, Paul Palomero Bernardo, Oliver Bringmann
{"title":"为深度神经网络加速器自动生成快速准确的性能模型","authors":"Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, Mika Markus Müller, Federico Nicolás Peccia, Felix Thömmes, Jannik Steinmetz, Valentin Biermaier, Adrian Frischknecht, Paul Palomero Bernardo, Oliver Bringmann","doi":"arxiv-2409.08595","DOIUrl":null,"url":null,"abstract":"Implementing Deep Neural Networks (DNNs) on resource-constrained edge devices\nis a challenging task that requires tailored hardware accelerator architectures\nand a clear understanding of their performance characteristics when executing\nthe intended AI workload. To facilitate this, we present an automated\ngeneration approach for fast performance models to accurately estimate the\nlatency of a DNN mapped onto systematically modeled and concisely described\naccelerator architectures. Using our accelerator architecture description\nmethod, we modeled representative DNN accelerators such as Gemmini, UltraTrail,\nPlasticine-derived, and a parameterizable systolic array. Together with DNN\nmappings for those modeled architectures, we perform a combined DNN/hardware\ndependency graph analysis, which enables us, in the best case, to evaluate only\n154 loop kernel iterations to estimate the performance for 4.19 billion\ninstructions achieving a significant speedup. We outperform regression and\nanalytical models in terms of mean absolute percentage error (MAPE) compared to\nsimulation results, while being several magnitudes faster than an RTL\nsimulation.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Generation of Fast and Accurate Performance Models for Deep Neural Network Accelerators\",\"authors\":\"Konstantin Lübeck, Alexander Louis-Ferdinand Jung, Felix Wedlich, Mika Markus Müller, Federico Nicolás Peccia, Felix Thömmes, Jannik Steinmetz, Valentin Biermaier, Adrian Frischknecht, Paul Palomero Bernardo, Oliver Bringmann\",\"doi\":\"arxiv-2409.08595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing Deep Neural Networks (DNNs) on resource-constrained edge devices\\nis a challenging task that requires tailored hardware accelerator architectures\\nand a clear understanding of their performance characteristics when executing\\nthe intended AI workload. To facilitate this, we present an automated\\ngeneration approach for fast performance models to accurately estimate the\\nlatency of a DNN mapped onto systematically modeled and concisely described\\naccelerator architectures. Using our accelerator architecture description\\nmethod, we modeled representative DNN accelerators such as Gemmini, UltraTrail,\\nPlasticine-derived, and a parameterizable systolic array. Together with DNN\\nmappings for those modeled architectures, we perform a combined DNN/hardware\\ndependency graph analysis, which enables us, in the best case, to evaluate only\\n154 loop kernel iterations to estimate the performance for 4.19 billion\\ninstructions achieving a significant speedup. We outperform regression and\\nanalytical models in terms of mean absolute percentage error (MAPE) compared to\\nsimulation results, while being several magnitudes faster than an RTL\\nsimulation.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在资源受限的边缘设备上实现深度神经网络(DNN)是一项极具挑战性的任务,需要量身定制硬件加速器架构,并清楚了解其在执行预期人工智能工作负载时的性能特征。为此,我们提出了一种自动生成快速性能模型的方法,以准确估计映射到系统建模和简明描述的加速器架构上的 DNN 的延迟。利用我们的加速器架构描述方法,我们对 Gemmini、UltraTrail、Plasticine-derived 和可参数化的收缩阵列等代表性 DNN 加速器进行了建模。结合这些建模架构的 DNN 映射,我们进行了 DNN/硬件依赖图组合分析,在最佳情况下,我们只需评估 154 次循环内核迭代,就能估算出 41.9 亿条指令的性能,实现了显著的提速。与模拟结果相比,我们在平均绝对百分比误差 (MAPE) 方面优于回归模型和分析模型,同时速度比 RTL 模拟快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Generation of Fast and Accurate Performance Models for Deep Neural Network Accelerators
Implementing Deep Neural Networks (DNNs) on resource-constrained edge devices is a challenging task that requires tailored hardware accelerator architectures and a clear understanding of their performance characteristics when executing the intended AI workload. To facilitate this, we present an automated generation approach for fast performance models to accurately estimate the latency of a DNN mapped onto systematically modeled and concisely described accelerator architectures. Using our accelerator architecture description method, we modeled representative DNN accelerators such as Gemmini, UltraTrail, Plasticine-derived, and a parameterizable systolic array. Together with DNN mappings for those modeled architectures, we perform a combined DNN/hardware dependency graph analysis, which enables us, in the best case, to evaluate only 154 loop kernel iterations to estimate the performance for 4.19 billion instructions achieving a significant speedup. We outperform regression and analytical models in terms of mean absolute percentage error (MAPE) compared to simulation results, while being several magnitudes faster than an RTL simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1