O. Yu. Kytikova, I. S. Kovalenko, T. P. Novgorodtseva, Yu. K. Denisenko
{"title":"羟基二十碳四烯酸在调节支气管哮喘炎症中的作用","authors":"O. Yu. Kytikova, I. S. Kovalenko, T. P. Novgorodtseva, Yu. K. Denisenko","doi":"10.1134/s1607672924701126","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Hydroperoxyeicosatetraenoic acids (HETEs) are metabolites of arachidonic acid that are oxidized by a family of enzymes including cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. These enzymes are widely present in various organs and tissues, and the HETEs they synthesize perform an important function in the regulation of immune reactions and haemostasis processes under physiological and pathophysiological conditions. More researchers confirm the role of these oxidized metabolites in modulating inflammation in asthma. The high production of HETEs in allergic and severe asthma indicates their involvement in the processes of an acute inflammatory response. On the other hand, disturbance of the metabolic transformation of arachidonic acid contributes to the development of chronic inflammation due to insufficient synthesis of mediators that resolve inflammatory processes. Several HETEs have both pro-inflammatory and anti-inflammatory effects, which underscores the ongoing interest in their involvement in the pathogenesis of asthma. At the same time, research results are scarce. Based on an analysis of the literature, the pathways of metabolic transformation of 5-HETE, 12-HETE, and 15-HETE with the participation of cyclooxygenases, lipoxygenases, and cytochrome P-450, as well as their role in asthma pathogenesis, were discussed. The PubMed database was searched for information covering the last five years using selected inclusion criteria. Information queries included the following set of keywords: “bronchial asthma, hydroxyeicosatetraenoic acids, 5-HETE, 12-HETE, 15-HETE.” Literature data indicate that the role of HETEs in human physiology and pathology, including the modulation of inflammation in asthma, requires comprehensive study to selectively modulate the enzymatic pathways of arachidonic acid metabolism leading to the production of these mediators.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":"73 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Hydroxyeicosatetraenoic Acids in the Regulation of Inflammation in Bronchial Asthma\",\"authors\":\"O. Yu. Kytikova, I. S. Kovalenko, T. P. Novgorodtseva, Yu. K. Denisenko\",\"doi\":\"10.1134/s1607672924701126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Hydroperoxyeicosatetraenoic acids (HETEs) are metabolites of arachidonic acid that are oxidized by a family of enzymes including cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. These enzymes are widely present in various organs and tissues, and the HETEs they synthesize perform an important function in the regulation of immune reactions and haemostasis processes under physiological and pathophysiological conditions. More researchers confirm the role of these oxidized metabolites in modulating inflammation in asthma. The high production of HETEs in allergic and severe asthma indicates their involvement in the processes of an acute inflammatory response. On the other hand, disturbance of the metabolic transformation of arachidonic acid contributes to the development of chronic inflammation due to insufficient synthesis of mediators that resolve inflammatory processes. Several HETEs have both pro-inflammatory and anti-inflammatory effects, which underscores the ongoing interest in their involvement in the pathogenesis of asthma. At the same time, research results are scarce. Based on an analysis of the literature, the pathways of metabolic transformation of 5-HETE, 12-HETE, and 15-HETE with the participation of cyclooxygenases, lipoxygenases, and cytochrome P-450, as well as their role in asthma pathogenesis, were discussed. The PubMed database was searched for information covering the last five years using selected inclusion criteria. Information queries included the following set of keywords: “bronchial asthma, hydroxyeicosatetraenoic acids, 5-HETE, 12-HETE, 15-HETE.” Literature data indicate that the role of HETEs in human physiology and pathology, including the modulation of inflammation in asthma, requires comprehensive study to selectively modulate the enzymatic pathways of arachidonic acid metabolism leading to the production of these mediators.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s1607672924701126\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s1607672924701126","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Role of Hydroxyeicosatetraenoic Acids in the Regulation of Inflammation in Bronchial Asthma
Abstract
Hydroperoxyeicosatetraenoic acids (HETEs) are metabolites of arachidonic acid that are oxidized by a family of enzymes including cyclooxygenase, lipoxygenase, and cytochrome P450 enzymes. These enzymes are widely present in various organs and tissues, and the HETEs they synthesize perform an important function in the regulation of immune reactions and haemostasis processes under physiological and pathophysiological conditions. More researchers confirm the role of these oxidized metabolites in modulating inflammation in asthma. The high production of HETEs in allergic and severe asthma indicates their involvement in the processes of an acute inflammatory response. On the other hand, disturbance of the metabolic transformation of arachidonic acid contributes to the development of chronic inflammation due to insufficient synthesis of mediators that resolve inflammatory processes. Several HETEs have both pro-inflammatory and anti-inflammatory effects, which underscores the ongoing interest in their involvement in the pathogenesis of asthma. At the same time, research results are scarce. Based on an analysis of the literature, the pathways of metabolic transformation of 5-HETE, 12-HETE, and 15-HETE with the participation of cyclooxygenases, lipoxygenases, and cytochrome P-450, as well as their role in asthma pathogenesis, were discussed. The PubMed database was searched for information covering the last five years using selected inclusion criteria. Information queries included the following set of keywords: “bronchial asthma, hydroxyeicosatetraenoic acids, 5-HETE, 12-HETE, 15-HETE.” Literature data indicate that the role of HETEs in human physiology and pathology, including the modulation of inflammation in asthma, requires comprehensive study to selectively modulate the enzymatic pathways of arachidonic acid metabolism leading to the production of these mediators.
期刊介绍:
Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.